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EDITORS' PREFACE

The theme for the 1989 PME-NA Meeting is the description and analysis of

mathematical processes. This includes approaches to observing, measuring, and

understanding the processes which underlie mathematical behavior, as well as

models of learning, understanding, thinking, and problem solving as they relate to

the gathering and interpretation of data and the measurement of behavior.

This issue of the assessment of mathematical behavior, in our view, lies at

the heart of progress in the psychology of mathematics education. If we see the

study of mathematics education as a study based on experience--experience which

involves classroom observation and interaction as well as individual observations,

measurements, and the classification of empirical data--then we are faced with an

enormous challenge. How is it possible to characterize the complex, context-
dependent processes of mathematics learning in a way that does them justice? How

can we organize our experience in order to derive useful conjectures and carefully

examined conclusions, in order to improve the teaching and learning of mathematics

in a systematic way?

Clearly assessment is not just a matter of surface observation, or of easily-

scored mathematics tests. If it were, we would forever be bound by the inherent

limitations of basic skills tests, of superficially evident classroom characteristics, of

easily-determined subject variables, and so forth. The issue is whether there is some

meaningful, systematic way to assess deeper "mental processes" (e.g., understandings,

concepts, problem-solving processes in mathematics), non-self-evident social

structures and relationships, expectations (including one's expectations of one's own

performance possibilities), etc. These are constructs which may not be directly

observable, but can be inferred from the study of behavior.

Not only do we need to find new ways of approaching such assessment, but

we need to make explicit some of the assumptions underlying our present methods

of assessment. In their own ways, the papers in these proceedings address this issue.

Some papers do so by adopting one or another model of internal processes,
explicitly or implicitly. In our view, many of the differences expressed in the invited

papers and the reactions to them do not reflect different empirical observations, but

different assumptions about the kinds of observations that are important to make.

The research reports represent a variety of interests and have been
organized in this volume in the following categories:

I. Affective and Cultural Factors in Mathematics Learning
Algebra/Algebraic Thinking



III. Calculus
IV. Computer Environments in Mathematics Learning
V. Number Concepts
VI. Geometry, Measurement and Spatial Visualization
VII. Multiplicative Structures
VIII. Representations, Metacognition, and Problem Solving
IX. Teacher Beliefs
X. Teacher Education and Teacher Development

Each research report proposal was reviewed by three reviewers with
experience in the specialty using the criteria established by PME-NA as guidelines.

In cases of disagreement, the program committee members studied the comments

and carefully considered the proposal. This procedure resulted in denying three

proposals, and placing 15 of the abstracts in a "conditional" category. Authors were

provided with the reviewers' and program committee's comments, and the decision

was deferred pending the consideration of the final papers.

Of the 71 proposals submitted and reviewed, 53 were accepted, of which 46

were subsequently submitted as papers for presentation and inclusion in the
Proceedings. Of the 15 abstracts that were conditionally accepted, 7 were submitted

as full papers for presentation, and three of these were accepted.

The poster and video session topics also range widely. They include student

errors, problem solving, computer instruction, learning styles, and teacher education

and development in mathematics.

We would like to thank the other members of the Program Committee and

the Local Organizing Committee for their valuable assistance, and all of the
reviewers for their generously contributed time and expertise. We are especially

grateful to Thomas L. Purdy, our Conference Secretary, without whose editorial

assistance and organizational expertise these Proceedings would not have been
possible.

Financial support has been provided in part by the Center for Mathematics,

Science, and Computer Education and the Graduate School of Education at Rutgers

University, and by the New Jersey Department of Higher Education.

Carolyn A. Maher

Gerald A. Goldin

Robert B. Davis

(July 1989)
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History and Aims of PME

PME came into existence at the Third International Congress on
Mathematical Education (ICME 3) held in Karlsruhe, Germany, in 1976. It is
affiliated with the International Commission for Mathematical Instruction.

The major goals of the Group and the PME-NA Chapter are:

1. To promote international contacts and the exchange of
scientific information on the psychology of mathematics
education.

2. To promote and stimulate interdisciplinary research in the
aforesaid area with the cooperation of psychologists,
mathematicians, and mathematics teachers.

3. To further a deeper and better understanding of the
psychological aspects of teaching and learning mathematics
and the implications thereof.
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THE INTERACTIVE NATURE OF COGNITION AND AFFECT
IN THE LEARNING OF MATHEMATICS: TWO CASE STUDIES

Thomas J. Bassarear
Keene State College

The number of adult Americans who have not mastered
elementary mathematics is well-documented. it is
hypothesized that in such persons, both cognitive and
affective factors can play powerful roles in both
helping and hindering their mathematical
development. The paper presents results from a case
study with two students in which strong interactions
between cognitive and affective factors were observed.

The overall poor mathematical knowledge of American schoolchildren and

adults has been well-documented. One of the many contributing factors is the

relatively poor mathematical knowledge of the average elementary teacher. The

study examines the mathematical development of two hardworking but
mathematically weak students in a section of my Mathematics for Elementary

Teachers course. The purpose of the study was to examine those cognitive and

affective factors which help and hinder the student's ability to learn

mathematics.

The author met each week during the semester with each student for 30

minute audiotaped interviews. The students solved selected problems out loud

in a standard clinical interview format (Ginsburg, 1981). However, I made

strategic teaching interventions when I observed maladaptive beliefs or

attitudes or when I felt that some explication of specific problem solving

strategies would be instructive. In this sense, the method here is a derivative

of the Russian teaching experiment (Krutetskii, 1976). Finally, the students

were specifically asked for their thoughts and insights concerning their

progress several times during the semester.

This paper will describe three cases in this study in which the interaction

between certain cognitive and affective factors strongly influenced the quality

of the students' learning. There have been a number of studies documenting the

importance of students' beliefs (for example, Schram & Wilcox, 1988).

However, there have been few studies which have documented how specific

beliefs have influenced, positively and negatively, the learning of the students
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(for example, Schoenfeld, 1985), and no other studies in which the interaction

between cognitive and affective factors has been described in detail.

Beth's beliefs about the nature of mathematical problem solving
In the first interview with Beth, a common maladaptive belief emerged-

that one solves mathematics problems by choosing appropriate computations.

She was given the following problem: A car started on a trip from Amherst to

Boston, 120 miles away. Unfortunately, the car ran out of gas one-third of the

way through the last fourth of the trip. How many miles did the car travel
before running out of gas? Beth solved the problem by first calculating 1/4 of

120 and then 1/3 of 30 and came up with an answer of 10. When I asked her to

try to verify her answer, she responded, "10 into 120?" When I asked her
why, she said, " I'm not really sure . . . 12 times 10 equals 120 .. . I wanted to
put 10 into something. I wanted to check 10 somehow to see if there was a
third of 30."

A similar belief emerged during the second interview. It seemed that if a

problem reminded her of something from algebra, she would try to find a

formula. She was given the following problem: The sum of the measures of the

sides of a triangle is 35 inches. One of the sides is 4 times longer than the

second side and 1 inch longer than the third side. What are the lengths of the
sides? Her first attempt was to start with 4x and try to develop an equation.

When that failed, she tried dividing 35 by 4, but abandoned that saying, "That's
not right." When I asked her why, she responded, "It bothers me when it
doesn't come out evenly."

Two weeks later, after solving some word problems using her newly
developed skills (e.g., drawing diagrams, learning to use trial and error
effectively, using partial results, making tables, and looking for patterns) as

opposed to flailing blindly for a formula or simply groping about, Beth was able

to explain her initial reluctance to use trial and error: "Part of the reason I

didn't start doing this before is that I knew that I had to do a lot of figuring but I

didn't really want to look into it because it was too much work."

At this point, I asked her if she avoided the trial and error strategies

because they weren't "mathematical;" she had previously made several

statements about "working mathematically." She replied that as time went on it

wasn't that factor as much as "it just takes longer; if there was a shorter way, I

would do it that way."
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She was also able to state in her own words the usefulness of some of the

newly developed problem solving strategies. For example, she said that setting

up a chart was helpful because, "If I get lost, it gives me something to refer

back to."

I mentioned to her that I was excited by her progress. Her response was:
I'm happy with it because I can actually see what is going on. I can
see how come it works, which is something I never saw before. I

never really understood . . . Before I was just doing what I had to,
to get the answer and not really seeing what was happening. It left
some doubt, but I knew there had to be more to it. So I put it on a
shelf and said, "fine, that's just the way it is" . . . [Now] I'm
figuring these out easier than before, cause I can see the steps and
how to go about the different parts of it . . . It bothers me now if I

get the right answer and don't know how I got it.

Several weeks later, Beth earned an A on the midterm. On the next

interview, I asked for her attributions for her surprising development.

Spending time with you, thinking through the problems, realizing
what I am thinking as I was doing the problems. I'm able to do it
not just by myself. It's kind of guided; somebody's there watching
what I was doing, helping me to realize what's going on .. . It's not
just going through the problem, but talking about what I did
afterwards that reinforces what I did. It's motivating to actually be
doing the problems. There's positive reinforcement when I get it
right. Not only getting the right answer, but satisfaction in the
way I thought it through.

I remarked that on a test she could not talk out loud and work in front of

me. I asked her what she had learned that transferred even onto test situations.

Being able to do step by step, double checking, and rethinking, "am
I on the right track, does this make sense?" Even in my room, I'll
take part of the problem, not trying to figure it out in my head like
I used to do. I didn't think it could be as concrete as what it is . . .

making as much sense as what it does, how to make it make sense,
how to think it though and make things connect. As I did things,
they connected and make sense.

She referred to her newly developed ability to verify her solutions
herself and stated, "I know now how to go back to make sure, to check it in

different ways."

She further elaborated:

I'm more sure ... Knowing that I can solve problems has made me
look more into them. Before, If I came up to a problem like that,
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I'd be like, "I have no idea; I'll see how it's done in class." Now I
know that there's a way to do it. I know that I can do it. I just have
to find it. It's been a big motivator to try to solve the problems
with you.

At the end of the semester, I asked her how her attitudes about

learning and her beliefs about the best way(s) to learn math had changed

over the semester. She wrote:

I have learned how important it is for the person learning to
actually understand what is going on. It is necessary for students to
experiment and work with math so that they understand what they
are doing completely because if they don't then later on these
formulas and equations are going to have little relevance when they
want to use them again.

In Beth's case, several maladaptive beliefs emerged--that one solves

mathemtics problems by choosing appropriate computations, that one should

try to find formulas, that problems should come out evenly, and that one should

do as much as possible in one's head. A contributing factor to the first two

beliefs was, in her words, "laziness." That, however, was only one small piece.

She also did not have the necessary skills (e.g., making a table and using partial

results) to solve these problems efficiently. Another attitudinal factor was

that she did not have an experience of competence in mathematics, of

mathematics making sense, and of valuing mathematics. When these feelings

developed, she insisted on understanding the problems and felt personal

satisfaction after solving a challenging problem.

Mindy's beliefs about showing all work
Although both students exhibited many similar maladaptive beliefs, there

were differences and one in particular was striking. Beth realized during the

semester that trying to do as much of the problem in her head was not very

helpful. When I probed, she said that that's how you were supposed to do

problems. On the other hand, Mindy believed that she was supposed to show all

of her work. For example, on the Amherst-Boston problem referred to

earlier, she made a number line and labeled every tenth number (i.e., 0, 10,

20, 30, etc.) When doing problems requiring computations, she would do

virtually every computation longhand, for example, 60 X 4.

In my eyes, Mindy's belief was holding her back for a couple of reasons.

First, her laborious computations often caused her to lose her train of thought

on the larger problem. For example, she reduced one problem to having to find
...
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"how many times does 13 go into 420?" Instead of simply dividing 420 by 13,

she used trial and error to determine how many times "13 goes into 420."

Second, doing everything on paper gave a tedious and mechanical tone to her

problem solving episodes.

One day while working on a problem, she calculated 75 x 3 mentally. I

asked her how she got 225. She laughed embarrassedly and said, "I don't know."

I assured her that I had asked not because she was wrong, but because I wanted

to know how she got 225. She said, "I thought I'd impress you" and laughed

again.

After she had solved the larger problem, I asked her about the mental

math. "Is this mental computation something new? You just decided to do this

on your own today?"

M: Yah, I never do it. I didn't come in planning to do it. . . [It's]
neat. All these tricks that people have about math, I never knew. I

always do everything right out and like you did with the 2000, and
you can just cancel out the zeros. I would do the whole problem,
instead of looking at it that way.
T: What do you think now?
M: I think it's a lot easier and just being aware of them. With that
table it's so easy . Cause I've been using tables a lot. I look at the
tables and I find there's tons of different ways to find the answer. I

just write it down and look around. [We had done some work with
using tables to record partial results.]
T: It's just like a whole new world.
M: Yes it is. It's kind of fun . . . I think I'm actually understanding
what I'm learning. I can't believe it.

Two weeks later, after the midterm on which she also earned an A, I asked

Mindy to attribute the causes of her surprising success.

She mentioned the mental math. I asked her where her newly developed

ability to do mental math came from. She replied:

I think it's because I'm confident in this thing . . . and I'm trying to
expand now, have fun with it. I'm trying to challenge myself. I've
never done it before. I've had stuff [i.e., calculations] all the way
around the pages . . . and all these different numbers, but I also
think I'm starting to see the relationships among the numbers. For
example, 32 x 4 is easy cause you have 2+2+2+2 and it's 128.
Then 32 x 7 is not bad cause it's 32 x 4 + 32 x 3. I never saw the
patterns before. When I started working with those tables I really
liked how that worked, how you can get a pattern going and can see it.
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Consistently throughout the semester, Mindy's comments about her

learning were permeated with affective statements. At the end of the first
interview, she said, "I was never good with word problems and when you

mentioned word problems, I thought, 'Oh God, he's gonna think I'm a jerk
becaaue I have a hard time doing these.'" On the third interview, she remarked

that she was doing better than she had expected in the course. She added,

"Somewhere it's gotta get hard. It's so easy now. There's a trick somewhere."

When asked to attribute her success after the midterm, her remarks included

the following statements. "One of the reasons I'm doing better is that I feel

calmer." "The biggest part is that I'm not afraid of the class." "Coming in here

[to the interviews] gives me a peaceful feeling." "I feel more confident." "I

used to hate word problems, but when I see a word problem now, it's a
challenging feeling. I don't mind doing them."

Mindy had believed that one had to show all of her work when solving

problems. She had no specific recollections of having been told so, but simply

thought that's how one was supposed to do math. I had occasionally done some

mental math in class but had not pushed her to practice these ideas. Mindy's

use of them seems to have been spurred by two affective factors--wanting to

impress me and feeling confident enough in mathematics to challenge herself, to

take a risk.

Beth's difficulties with percents
Shortly after the midterm exam, Beth was having trouble with

understanding percents. One day in class she did not seem her usual self. She

made little eye contact with me and her eyes seemed glazed during the lecture

part of the class. The next day, she came to my regular office hours for help,

and I was able to help her construct a better understanding of percents.
Knowing that I was interested in how attitudes influence the learning process,

she volunteered that during the difficult several days in which she had felt lost,

her attitude had "gotten in the way." She elaborated:

It got fixed into my head that I can't do anymore of these [percent
problems]. . . Maybe if I had had a better attitude, my problem
solving skills would have helped me out a little bit. I couldn't even
figure out the basics of something that I needed to know.

In other words, her frustration and self-anger had virtually closed her access

to the many problem solving and metacognitive skills which she had developed

over the course of the semester.
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Conclusions

For purposes of research and analysis we often separate affective from

cognitive factors, and there are many research questions in which it is helpful

to do so. However, this paper has discussed three of but many examples during

the semester which support the belief that "affect and cognition are
inextricably linked, and that we cannot separate the two" (McLeod, 1987,
p.171). When Beth talked about how she was learning, many interactions

between cognitive and affective factors were apparent. She spoke of developing

certain problem solving strategies; of developing metacognitive skills to check

the problem solving strategies, a sense of meaningfulness which made it more

worthwhile to exert the effort, and feelings of satisfaction which positively

reinforced her effort. Recall that Mindy's development of mental math was

triggered by affective factors and that her attributions for success often had a

strong affective tone, using words like "peaceful," "confident," and "not afraid."

Both students stressed several common factors with strong affective

components which they felt played an important part in their mathematical

development. First, they stressd the importance of a tenacious determination to

understand. Mindy related an experience which occurred early in the semester

when she was still full of doubt about her ability in which she had difficulties

understanding the textbook's discussion of integers. Rather than coming to me

and saying, "I can't understand this material; help me," she persevered,

constructed a basic understanding and then came in with questions. Second,

they stressed the importance of the mathematics making sense and being
meaningful. Feeling this way was new for them and was an important
component which fueled their effort. Finally, in describing the value of the

interview experiences, both students also used affective descriptors. Beth

mentioned the reassurance of "somebody there watching" while Mindy spoke of

the "peaceful feeling" she felt during the interviews.

Given the growing concern over the number of adult Americans with

inadequate knowledge of elementary mathematics and the growing number of

college students requiring remedial mathematics, I hypothesize that, at least

with this population, the interaction of cognitive and affective factors can

strongly influence the mathematical development of many such students. A next

step in improving our understanding could come from applying what we have

learned from expert-novice research to investigate the differences between

those hardworking but mathematically weak students who succeed and those who

9



do not. An improved understanding of the cognitive and affective factors which

help and hinder such students' development can open up improved teaching

methods.
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THE VALUE OF CONCEPT FORMING IN
MATHEMATICS IN SCHOOLS WITH SECOND

LANGUAGE MEDIUM OF INSTRUCTION

Frank H. Swart
Vista University

In this article an attempt was made to give a scientific analysis of
the learning and teaching problem; a concept forming in
mathematics. It seems evident that meaningful learning occurs only
if new information is linked to existing relevant concepts. One of the
main problems facing teachers in less developed communities today,
is the establishment of new or unknown concepts to the learners.
The difficulties experienced lie not so much in introducing the
concepts, but in establishing it. A way had to be found to establish
new concepts keeping in mind that the cognitive states associated
with the concept do not exist, or are influenced by the differences in
educational experiences, language and socio-cultural experiences.
Research was done by the writer and his students, which proved
that, by attaching the new concepts properly to the set of concepts
of the pupil, within his concept framework, it is possible to obtain
success in these educational systems, even with all the limitations
that still exist.

THE BACKGROUND OF THE STUDY

The Education Department of the Republic of the Ciskei was very worried

as a result of the poor standard of the mathematics in their schools. They then

approached the author as Head of the Department of Didactics and Teaching

Science of the University of Fort Hare to investigate the problem.

By way of a thorough investigation involving visits to schools, interviews with

teachers, principals, inspectors of schools etc., it was clear that there was a number

of problems present. Apart from other problems like inadequately qualified teachers,

language problems, inadequate didactic approaches and media scarcity, we decided

to concentrate on what seems to us the most important problem, namely inadequate

conceptualization. We have ascertained that there seems to be a lack of
understanding of basic concepts used in Mathematics. Even although pupils can

define certain concepts, it still seems as though they cannot apply those concepts.

Problems are thus experienced with the maneuverability of concepts in Mathematics.
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THE OBJECTIVES OF THIS STUDY AND RESEARCH

The objectives of this study and research are:

1. to adapt the education system in mathematic teaching to the
existing situation in respect of the number of unqualified teachers;

2. to use scarce manpower very economically in as far as qualed
teachers' expertise will be utilised to their full capacity;

3. to serve as a morale booster for teachers and pupils;

4. to improve the quality and effectiveness of teaching of
mathematics in schools;

5. to increase the learning outcome of final year pupils in
mathematics;

6. to suggest strategies for in-service training programmes for
unqualified teachers in mathematics and

7. to lay down principles for the development of teaching programmes
on the core concepts in school syllabi for mathematics, utilizing video
as a didactic aid.

THEORETICAL FRAMEWORK

In this study the maneuverability of concepts is regarded as the conscious

application of an abstract concept in a new situation. In a given cognitive act

structure the learner acts and applies an abstract concept from a preceding situation

to a new situation. This implies that meaningful learning can only occur if new

information is linked to existing relevant concepts (Gagne, 1970). The problem lies

in the fact that when dealing with pupils in the didactic situation, teachers assume

that the cognitive structures have already been established in early education and

that relevant concepts already exist. This assumption is not always correct, because

the cognitive foundations underlying knowledge and skill areas must have a firm

foundation for proper conceptualization to take place (Gagne, 1970). Furthermore

formative influences i.e. differences in educational experiences, mother-tongue

influences and socio-cultural experiences can and do affect cognitive development

(Gagne, 1985).

Conceptualization which includes the establishment of a new concept and the

maneuverability of that concept is regarded as a didactic reality in this study. Apart

from the problems identified in the previous paragraph quite a number of other

problems are linked to the problem of conceptualization which either add to the

problem or could be possible causes of the problem. The increasing volume of
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scientific knowledge, pupil growth rate, teachers' qualifications, pupil achievement,

medium of instruction, the lack of continuity between the cultural world of the

family and that of the school, financial problems and media scarcity, are some of

the most important factors which were identified as problem areas in education

contributing to poor conceptualization (Ausubel, 1969).

Research of the literature resulted in an investigation into the learning

theories of Ausubel, Van Parreren and Gagne, to establish the role of
conceptualization in meaningful learning. From these theories of learning it is
inferred that the learner should be provided in advance with highly general concepts

to which new concepts can be anchored; the learner's present knowledge including

concepts is defined as his cognitive structure; the cognitive structure is represented

in the learner's conceptual framework; the relation between new concepts and
relevant items in the conceptual framework must be nonarbitrary and substantive;

the learner must recognize the relationship between two concepts, a point of contact

in various situations must be found in order that a new concept may be formed; a

relevant learning intention must be present; examples of concepts should be given;

language plays a very important role in conceptualization; questioning by the teacher

asks the learner for demonstrations of concrete instances of the concept; and the

learning of high level rules are dependent on the mastery of prerequisite lower level

rules (McCall, 1952).

Taking research findings on conceptualization into account attention is given

to some didactic strategies in the teaching of concepts. Gunning's seven skills i.e.

translation, interpretation, application, extrapolation, evaluation, analysis and
synthesis which are in accordance with Bloom's Taxonomy of Educational Objectives

and dramatisation, are some of the didactic strategies identified for the teaching of

concepts in a Third World context (Gunning, 1978).

In searching for a possible means of overcoming the problems pertaining to

the maneuverability of concepts, the application of the video as a didactic aid is
investigated.

Apart from the didactic principles other parameters are also identified to be

applied in the production of the video-programmes. Some of the most important

parameters are: structure, clarity and context, orientation, choice, planning, active

meaning and evaluation. The identified parameters can be used to evaluate
video-programmes and it can function as a structure for script-writing and the

evaluation thereof (Lindeque, 1986).
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THE HYPOTHESIS

A review of the literature and research studies (Gagne, 1985), led to the

hypothesis that conceptualization in Mathematics can be improved by using the

video as a didactic aid in the didactic situation.

METHODOLOGY

For the purpose of this research it was decided to experiment with a matrix

class in Mathematics.

First of all the matrix mathematic syllabus was analysed into concepts.

Thirty six important concepts were selected. On each of the concepts a video was

made, plus minus five to seven minutes long each. Care was taken to make sure

that the new concept that was to be explained, was based on the concept framework

of the student and within the life experience and vocabulary of the student. These

videos were accompanied by a pamphlet explaining what the student should know

before explaining this concept and also a number of exercises to follow it up. The

teacher should use this video only as a teaching aid and most definitely not to re-

place the teacher.

The subjects of this investigation were thirty eight pupils from Amabhele

High SchOol in Krwakrwa village in Ciskei. This village is situated in a rural area.

The research design is fourfold in nature:

Measurement of the effect of the teaching aid on
pupil achievement in the concepts covered by the
video lesson;

investigation into the biographical and socio-economic
status of the pupils as well as an investigation into the
effect of the video lessons on the pupils;

investigation into the pupils' attitudes towards the
teaching aids;

investigation of the pupil's normal behaviour in a
school setting.

It was decided to include the complete group of Std. 10 pupils taking
Mathematics at Amabhele High School. The group was thus taken intact, "exactly

as it exists, with all its inherent patterns of characteristics and behaviours" (Cates,

1985).
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The sample thus taken was neither random nor stratified. Such samples are

also referred to as incidental or accidental sampling (Behr, 1983).

The fact that pupils would be compared with themselves by analyzing the

fluctuations in their achievements, brought a perfect match between experimental

and control groups since the same pupil was part of both groups .

The subjects of this investigation included boys and girls. The teacher was

provided with the video-programmes and worksheets for the pupils. The final

instruction of the lesson had to be carried out in the conventional way by the
teacher in the class. The video-programmes would only serve as a didactic aid in

the lesson.

The dependent variable in this study is the pupil's achievement in
Mathematics which is supposed to change as a result of the application of
video-programmes on concepts (Cates, 1985). Finally the Wilcoxon Test is applied

using the expected mark and the actual mark to determine statistically the
significance level and thus the validity of the measured effect of video-programmes

on pupil achievement can be proved.

Because of the fact that the subjects in this investigation would be evaluated

during the examinations in September 1986, which is a normal practice in schools

in the Ciskei, the Hawthorne effect could not influence the results. The Hawthorne

effects implies that the observed person usually alters behaviour in order to gain the

favour of the observer, resulting in incorrect observation.

The researcher also conducted a general questionnaire among the students

to obtain biographical and other relevant data.

RESULTS

The pupils undergoing the experiment achieved higher marks that the

expected marks, thus indicating that the video-programmes had a positive effect on

pupil achievement.

CONCLUSIONS AND IMPORTANCE FOR THE
PSYCHOLOGY OF MATHEMATICS EDUCATION

The research showed clearly that the method of using well prepared
video-programmes based on the transfer of concepts are improving the quality of

mathematic teaching. It also proves that the best way to transfer concepts is by

linking up with the existing concept framework of the student and to use media of
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communication which are understandable to the student. Therefore the existing

framework of concepts of the student must be known to the teacher, so that he

could link up with that framework in order to explain a new concept. If mathematic

teachers follow this approach, especially where the students are studying through a

second language medium, they are bound to get better results.
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CONCEPTUAL DIFFICULTIES IN ALGEBRA WORD
PROBLEMS HAVING ONLY ONE VARIABLE

Aparna B. Ganguli
University of Minnesota

This paper analyzes the results of a written test and a
follow-up diagnostic Interview conducted with students In a
developmental mathematics course In order to understand
the causes of misconceptions In solving algebraic word
problems. The students experienced difficulty In translating
sentences of the type, "The sum of two numbers is 23. The
smaller number is x. What Is the larger number ?" The most
common answer was y instead of 23 - x. Analysis of the
solution strategies indicated that algebraic translation
became abstract to the students using only one variable
when more than one quantity was Involved in a word
problem.

Results from the National Assessment data indicated that ability to solve

traditional word problems in algebra was poor for all groups of students (Carpenter

et al, 1982). Application of algebra skills in solving word problems remained as a

major area of difficulty for most students. Clement (1982) expressed concern about

students' understanding of equations and how they are used to symbolize meanings.

Clement (1982) stated that "understanding an equation in two variables appears to

require an understanding of the concept of variable at a deeper level than that

required for one variable equations" (p. 22). This paper dicusses an alternative view

of the above statement. Students often experience severe difficulty in translating

some standard algebraic word problems if required to use only one variable instead

of two.

Standard algebra textbooks introduce the topic of solving linear equations in one

variable early in the course, followed by applications where students are required to

solve word problems using only one variable. Examples of some of the application

problems are listed in Table 1. Solving systems of equations with two or three

variables is introduced much later in the course. It is assumed that students need

more experience in algebraic manipulation before they can solve simultaneous

equations in two variables. This article documents information revealing that solving

systems of linear equations simultaneously is a relatively easier task to compared to

translating word problems involving two quantities with only one variable.
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Table 1

Samples of Word Problems Students are Required to Solve with the Knowledge of

Solving Linear Equations in One Variable.

Examples of problemsa Using only one variable students are expected to write

1. The sum of two numbers is

107. One number is 5 more

than the other number. Find

each number.

2. There are 75 coins consisting of

nickels and dimes. If the coins are

worth $5.95, how many of each

are there?

3. $4,500 is invested, part at 8%

and the rest at 10% simple interest.

The yearly interest from the 8%

investment was $90 more than that

from the 10% investment. How much

was invested at each rate?

One Number

is x

Number of Nickels

(or dimes )is x

$x is invested at

8% ( or 10%)

Other Number

is (107 x) or (x + 5)

Number of dimes

(or Nickels) is 75 -x

$(4,500-x) is

invested at 10%

( or 8%)

a Source: Hall (1988).

The objective of this study was to explore the students' ability to translate

sentences into algebraic relationships using different variables. The interest of this

paper is to discuss one particular type of misconception in order to uncover the

underlying thought processes.

PROCEDURE AND RESULTS
Subjects

The subjects were 51 students enrolled in two sections of an elementary algebra

course and 49 students enrolled in one section of an intermediate algebra course

offered at the General College, University of Minnesota. Most of the students

enrolled in the intermediate algebra course had elementary algebra as a prerequisite.

Elementary algebra sections were chosen arbitrarily; the intermediate algebra section

was taught by the author. These students were then asked to pick up their test papers

during the author's office hours, during which time five students were selected
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randomly from each section for a short interview. While handing in the test papers

these students were asked to describe their solution processes.

Written Test Data.

Table 2 shows four items given on a 10-minute written test in the elementary

algebra course. The test was administered after the students were introduced to

solving linear equations in one variable. The author observed the classes taught by

graduate teaching assistants for half an hour when the students were solving word

problems supposedly using only one varable. At the end of the lesson the test was

administered. A large number of students failed to answer the Question 1 correctly.

The typical wrong answers given to the Questions 1, 2 and 4 by the students

indicated that, even though they were not introduced to the concepts of two

variables, most of them attempted to use two variables in algebraic translation.

Table 2

Performance of Elementary Algebra Students on Four Items in a Written Test

Test questions

(Number of students= 51)

Correct Typical Wrong

Answer Correct Answer

1. The sum of two numbers is 23-x 13

twenty-three. The smaller

number is x. What is the

larger number?

2. One number is four less than x, x - 4 22 x = y - 4

another number. Find the or x, x + 4

numbers in terms of x.

3. The sum of two numbers is x + y = 45 98

forty-five. Write an

algebraic expression in

two varibles.

4. One number is three more x + x + 3 = 23 41 x + y + 3 = 23

than another number and

their sum is twenty-three.

Write an algebraic expression

in one varible.
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Table 3 shows the performance of intermediate algebra students on one word

problem included in the first examination of the school term. The students completed

and were tested on the first five chapters of the required algebra text book for the

course. The second chapter of this text book introduced solving linear equations

Table 3

Performance of Intermediate Algebra Students on a Particular Word Problem on a

Written Test . Number of students = 49

Test questions Correct answer % Correct

1. The sum of two integers is In one variable: 6

11 and their difference is either x - (11 - x) = 35

35. Write an equation to. or, (11-x) - x = 35 ;

describe this. In two variables: 81

x+y= 11 &x-y= 35
2. Find the integers in the 23, -12 72

above problem.

in one variable, followed by solving word problems using one varible. The problem

listed in Table 3 is a relatively easier problem from the word problem section of

Chapter 2. Solving linear equations in two variables is not introduced until chapter 9

( Hall, 1988).

The author analyzed students' solution processes and found that the students

had difficulty in translating the word problem using only one variable. Most of the

students used two variables to write the equation. Successful students found the right

solution to the problem by the method of elimination, althogh solving systems of

equations was not introduced in the course at the time of the examination.

Explanations that document their understandings in solving the problem correctly

needed to be explored, and 5 students selected randomly were interviwed.

Interview Tasks.
Tasks were specifically designed to focus on the conceptual part of relating two

quantities by using only one variable. The students were asked to use only x in each

of the problems. The tasks were to relate two quantities in terms of one variable

when addition was involved and when subtraction was involved. For the limited
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scope of this paper details of the student responses are not reported here. Each

student was interviewed individually on the average of five minutes per student. The

following interview questions were asked, depending on the student's responses.

1. If one number is x what is the other number?

2. Why ?, or Can you answer in terms of x only ?

3. How are x and y related ?

4. What are you thinking? Or How did you get this answer ?

Table 4 reports the responses of three elementary algebra students . The other

two students had responses similar to Student A. It was noted that the successful

student (Student C) also thought in terms of two variables and reported the final result

Table 4

Elementary Algebra Student Responses on Interview Tasks. Question 1 of Table 2.

Interview Questions

1. 2. 3. 4.

Student A y I don't know Their sum is 23. Since x is smaller it

should be less than 12.

Student B Hard to say I don't know X could be anything

what x is . less than 23.

Student C 23 -x I thought x + y = 23

and subtracted x

from both sides.

Question was skipped.

after solving one variable in terms of the other. An intermediate step was needed for

that student to think in terms of x. Table 5 reports some of the responses of

intermediate algebra students on question 1 of Table 3. It was noted that four out of

five students thought about question 1 in terms of two variables. The students who

knew how to solve linear equations answered Question 2 correctly.
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Table 5

Intermediate Algebra Student Responses on Interview Tasks . Question 1 of Table 3.

Interview Questions

1. 2. 3. 4.

Student F x + 1 Two integers.
Student G I don't know I know x + y = 11 Sum is 11 If x is 10

but I don't know and the difference y could be 1,
what x is. is 35. but their

difference...
Student H writes x + y = 11. writes x + 3 = 11 x plus whatever

x =11 -y = 11 -x is 11. So 11-x.
Student I writes x + y = 11 x - 7/2 =35 xis 11y x =11y; 11y -y

x y = 35 = 35; lOy = 35

y = 35/10;

y =7/2 and then

plug in.
Student J writes x + y = 11 x = 11 -y Their sum Thinking y -x

is 11 is 35. So no

solution.

Question was skipped.

DISCUSSION

The students generally translated sentences into algebraic expressions by a

"word order matching" approach, where the order of the key words is mapped directly

into the order of symbols (Clement, 1982). When given the sum or difference of two

numbers, a more concrete task was to think x + y = the given sum or x y = the

given difference rather than thinking of the two quantities in terms of one variable.

The words larger and smaller in Question 1 in Table 2 made the problem even harder

for Student A. That student wanted to split 23 in equal halves and think of x in terms

of a concrete number. Clearly Student A had difficulty in relating two quantities with

only one variable. In later discussion Student A said if the larger number was y, then

he could understand the relation between x and y, and promptly wrote x + y = 23.

This student treated both x and y as two fixed unknown quantities whose sum is 23

and retained the misconception about the variability of the symbol x.
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Student B did not pay attention to the words smaller or larger, but exhibited some

degree of understanding about the concept of variable by answering interview

Question 4. In a subsequent conversation she revealed that the most confusing thing

to her was that x could not be solved specifically and it could be any number less than

.23. This inconsistency in thought prcesses might be associated with viewing the

question as an equation rather than an algebraic expression. The typical wrong

answer for Question 2 in Table 2 can perhaps be explained by the notion that many

students view most algebraic expressions as equations and do the operations

accordingly.

The Intermediate algebra students, most of whom preferred to use two variables

in problem 1 of Table 3, mentioned the relative ease of using two variables as the

reason for their preference. In a later discussion, when the students were shown the

correct response in one variable, all five students thought it was too complex to

follow. Not knowing from which section of the book the problem was obtained, a

graduate teaching assistant majoring in mathematics used two variables to translate

the problem. This leads one to wonder about the wisdom of asking students

underprepared in mathematics to solve algebra word problems involving two

quantities without first introducing the method of solving simultaneous linear

equations. According to Wollman (1983), mathematics instruction should focus on

the 'enhancement of the disposition toward coherence' (p.181). Once the conceptual

difficulties are identified, appropriate instructional strategies which allow the students

to understand the cohesion of the various methods can be designed. A unified view

of word problems can be presented to the students if systems of equations are

presented early in the course.
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PROCESSES OF MATHEMATIZATION IN ALGEBRA PROBLEM SOLVING

WITHIN A COMPUTER ENVIRONMENT: A FUNCTIONAL APPROACH

Carolyn Kieran, Andre Boileau, and Maurice Garancon

Universfte du Quebec a Montreal

This paper describes a computer-supported, functional approach to
problem representation and solution. A teaching experiment was carried
out with 12 average-ability, seventh graders who participated in hourly
sessions twice a week for a four-month period (once a week for part of the
group). It was found that the functional approach to representing
problem situations was extremely accessible to all subjects. However, for
simple problems of the type ax + b = c, some subjects preferred to use
inverse operations rather than the function tool as a solving device; for
more complex problems (e.g., the type ag + b = cx + d), all relied on the
functional approach.

INTRODUCTION

Theoretical Framework
The process of problem solving can be divided into three separate phases:

mathematization, solution, and verification. Mathematization is generally considered as that
part of the process whereby the problem situation is translated into some mathematical
model or form, such as an algebraic equation or computer program. Psychologists referto
this process as problem comprehension, a process which when further subdivided is said to
include: (a) reading the problem, (b) forming a mental representation that interprets the

information in the problem into objects with associated properties, (c) organizing the

relations among those objects, and (d) representing the relations in some way, for example,

as an equation.

The problem comprehension process provides the problem solver with the initial
representation of the problem from which problem solving proceeds. At a gross level of

analysis, there are two main approaches to problem comprehension. One can be called a

direct-translation approach; the other, a principle-driven or schematic approach. Empirical

studies have shown that, in algebra, for example, although competent students are able to

use schematic relations to successfully solve word problems, students more typically have

great difficulty in extracting conceptual relations from problems. Though cognitive research

has been able to show that schemata are useful theoretical constructs, the findings of this

body of studies, to date, have not been able to shed much light onto why students
experience these difficulties or on how instruction might be geared to improve the situation.

An approach that appears more promising with regard to helping students with the

mathematizing of problem situations is one that was first proposed by Clement, Lochhead,

and Soloway (1980) and later elaborated on by Sfard (1987). Sfard tested sixty 16- and 18-
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year-olds who were well-acquainted with the notion of function and with its formal structural

definition in an attempt to find out whether these students conceived of functions
operationally rather than structurally. An goerationat conception, according to Sfard, is one

that views a function as an algorithm for computing one magnitude by means of another. A

structural conception is one that views a function as a correspondence between two sets.

The majority of the pupils were found to conceive of functions as a process rather than as a

static construct -- despite the instruction they had received. In a second phase of the Sfard

study involving ninety-six 14- to 17-year-olds, students were asked to translate four simple

word problems into equations and also to provide verbal prescriptions (algorithms) for

calculating the solutions to similar problems. They succeeded much better with the verbal

prescriptions than with the construction of equations. These findings supported the results

of the study by Clement et al. which showed that students can cope with translating a word

problem into an "equation" when that equation is in the form of a short computer program

specifying how to calculate the value of one variable based on another. These findings also

suggest a predominance of "operational" conceptions among students and consequently

imply that instruction in the process of problem solving might be more successful if it were to

emphasize procedural rather than structural approaches.

Objectives
The present study takes the perspective of the Clement et al. and Sfard studies. It is a

three-year project that explores the use of computers in the teaching of algebra. During this

first year, the research emphasis is on the development of student understanding of an

approach to mathematizing problem situations. The computer is used as a tool to express a

procedure for solving a problem. One of the main differences between the short computer

programs used by the students of the Clement et al. study and the programs generated by

our subjects is that Clement's environment used BASIC. In our study, the language is tailor-

made, so that students are able to express their procedures in a kind of everyday language

that admits significant naming of variables (Kieran et al., 1988).

One of the advantages of a procedural representation that is close to natural language is

its relationship to the historical development of algebraic symbolism. The first evolutionary

stage through which algebra passed was the period before Diophantus, a period which was

characterized by the use of ordinary language descriptions for solving particular types of

problems and which lacked the use of symbols or special signs to represent unknowns.

The later development of a specialized symbolic language stripped away meaning from the

language in which algebraic activity had been previously expressed. The cost is that
symbolic language is semantically extremely weak, introducing the difficulty for the learner

that, by suiting all contexts, the language appears to belong to none (Boileau, Kieran, &

Garangon, 1987; Wheeler, 1989).

Thus, the principal aim of this years study is to document the main phases of the

processes of mathematization as they occur in students while they are generating
procedural representations of certain problem situations, which representations are stated
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in a kind of everyday language. The hypotheses we have generated find their bases in
ideas stated by Usiskin (1988) and Filloy and Rojano (1984). Usiskin has pointed out that

in solving problems such as "When 3 is added to 5 times a certain number, the
sum is 40," many students have difficulty moving from arithmetic to algebra.
Whereas the arithmetic solution involves subtracting 3 and dividing by 5 (i.e.,
using inverse operations), the algebraic form 5x + 3 = 40 involves multiplication by
5 and addition of 3 (i.e., using forward operations). That is, to set up the equation,
you must think precisely the opposite of the way you would solve it using
arithmetic. (p. 13, parenthetical remarks added)

Furthermore, Filloy and Rojano (1984) emphasize that problems which can be represented

by equations such as x + a = b, as. = b, and ax + b = c can be easily solved by arithmetic

methods. They claim that a "didactical" cut occurs with problems that are representable by

equations of the type ax + b = cx + d, for students are generally not able to solve this type of

problem by arithmetic methods. However, this suggests that not only do students have to

shift from thinking about inverse operations to thinking about forward operations, but also

that they usually have to generate a written symbolic representation upon which they must

apply algebraic methods.

We hypothesize that a functional approach to the early learning of algebraic problem

solving in an environment supported by a computer can be conducive to helping students

think in terms of forward operations without requiring that they use a static, equation form of

representation--rather a procedural representation that has the dynamic, "operational,"

features which, according to Sfard and Clement et al., allows students to be more
successful problem solvers.

THE STUDY

Subjects
In January 1989, we began a long-term teaching experiment in two schools, with 12

average-ability Grade 7 students who volunteered to participate in our three-year project.

The four subjects from one school were "interviewed" for an hour, twice a week, in groups

of two until the end of the 1988-89 school year. The remaining subjects from the other

school were interviewed once a week, some in pairs and some individually, until the end of

April, at which time three of these subjects continued on a twice-weekly basis.

In addition to the interviewer, an observer was present at every session. Her/his

observation notes, as well as dribble files, the students' written work, and video tapes of

each session served as data. The analysis of our subjects' work that is presented in this

paper is based on the data gathered from January to the beginning of May.

The Environment
Because of page constraints, we describe the environment and our instructional

procedures in the same section. The first session with each subject began with the
presentation of a problem situation, without the actual question, for example., "Karen has a

part-time job selling magazine subscriptions in her neighborhood; she is paid 20$ per week,

plus a bonus of 4$ for each subscription she sells." The question, which would follow later



in the same session, was, "How many subscriptions must she sell if she wants to earn 124$

in a week'?" There were several reasons for separating the problem situation from the actual

question. One was to prevent the students from attempting to solve the problem
immediately. Since we were attempting to teach them a new way of "looking" at problems

and at the procedures that can be used to solve them, we considered that, by temporarily

removing the goal, they would be able to learn without being hindered by their old
approaches to problem solving, that is, by their spontaneous use of inverse operations. A

similar technique was used in a puzzle-problem study carried out by Sweller and Levine

(1982, cited in Owen & Sweller, 1989) who found that means-ends analysis (i.e., working

backward from the goal to the givens) could be prevented by giving subjects the same

puzzle with the goal removed.

After the initial presentation of the problem situation, the interviewer then asked our

subjects a series of questions such as, "What if Karen sells 2 subscriptions? . . .

5 subscriptions, . . . 12 subscriptions, . . . and so on?" She/he subsequently proposed

that they verbalize the operations that they were carrying out, which operations were then

written as follows:

12 x 4 gives 48

48 + 20 gives 68

After writing several of these sets of statements for the same problem situation, subjects

drew a table which not only recorded the values they had calculated, but also reflected their

discussion as to how the headings of the two columns were to be labeled (e.g., number of

subscriptions, total amount). Finally, they were asked if they were able to write a general rule

for their calculations in the form of a sequence of statements that a computer could carry

out, such as:

number of subscriptions x 4 dives extra bonus

extra bonus + 20 dives total amount

This program was then entered into the computer number of subscriotions was specified as

the input variable and total amount as the output variable. The task, at this point, was to

generate certain values for the input variable (beginning with the ones they had already tried

on paper) in order that the computer calculate the corresponding values of the output

variable. At this moment, the actual question that was to accompany the problem situation

was presented. The aim was to continue entering different values for the input variable until

the value of the output variable calculated by the computer matched the goal data of the

problem question (in this case, 124$).

The second and third sessions followed the same general plan as the first, except that

there was less and less intervention at each session. By the fourth session, subjects were

on their own. Since the problem situation was still being presented before the actual

question, it was suggested to subjects that they generate their own hypothetical question

to go with the problem situation in order to provide some direction to their work. In fact, as

soon as the problem situation was presented, the interviewer asked subjects what question
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they would like to answer that would go with the given situation. After subjects had created

their "program" and had tried out some values to answer their question, the interviewer then

presented the actual question.

From the ninth session onwards, subjects were presented with entire problems to be

solved at once, that is, with both the situation and the question. It was believed that, by this

time, the functional approach to representing problems and to solving them was solidified
and could serve as a basis for working with a wider range of problems that were also more
complex.

The Problems

We have classified the problems that were presented to the subjects of this study
according to the types of equations that one could use to represent these problems. A

sample of these problems and their types is provided in Figure 1. Note that the students of

the study never saw nor worked with these equations; they were for our classification
purposes only.

The first three sessions involved problems of the type ax + b = c. From Sessions 4 to 8,
the problem-types were expanded to include ax. - b = c, b ax = c, ex + x = c,
(a + x) +25.= c, and ax x = c. From Sessions 9 to 17, when the problem situation and

question were presented together, the problem-types also included b (dx + eax) = c,
+ (x + a) + + (x+ a) = c, and other variations of multiple occurrences of the

variable on one side of the equation. From Session 18 onwards, problems that can be
modeled by equations with occurrences of the variable on both sides of the equal sign were
attempted, for example, ax = b + cx and ax ± b = cx ± d.

Commercial airplanes cruise at very high altitudes. Their descent to landing is gradual. Suppose you
are on a plane whose altitude is 10 000 metres. It then starts its glide to landing, dropping at a rate of
450 metres per minute. How long will it take the plane to reach an attitude of 1900 metres? lb ax =c]

The number of students in your school is 15 times the number of teachers. If the total number of
teachers and students is 256, how many students and teachers are there in your school?

+ ax= c]

I have 25$ in my pocket. For the class party, I buy 7 bags of chips and 3 cases of soft drinks. One case
of soft drinks costs 4 times the price of one bag of chips. If I have 4,48$ left after making these
purchases, how much did each item cost? [b - (d.ast + es). c]

The concession manager at the Montreal Forum offered two pay plans for people willing to sell peanuts
in the stands for the Canadiens hockey games. The first pays 28,68$ plus 0,17$ per bag sold. The
second pays 11,00$ plus 0,38$ per bag sold. For what number of bags sold will these two methods
give exactly the same pay? [as + b = cs+ d]

Figure 1. Sample of problems and their type. (Our thanks to J.T. Fey and M.K. Heid for
some of the word problems of our study.)
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It is to be noted that for all problem-types, the functional representation of the problem

as a sequence of single-operation relations was the same. As well, the first part of the
solving procedure, that is, using trial values for the input variable, did not vary from one

problem-type to another. The singular difference occurred in the last part of the solving

procedure, with respect to the output variable: For all problems except those with
occurrences of the variable on both sides of the equation, solving the problem required

generating an output that matched one of the numerical data of the problem; for all
problems that could be modeled by equations with several occurrences of the variable on

both sides of the equation (e.g., ax + b = a + d), solving the problem required generating

two outputs that were equal.

However, since solving and verification procedures are beyond the scope of this paper

(see Kieran et al., 1988, for a discussion of some of the solving methods used by other

subjects in this environment), the following presentation of preliminary results focuses

primarily on what our subjects did during the first phase of problem solving, that is, on the

representation or mathematization phase. Solving procedures are discussed only to the

extent that they interacted with representation procedures.

RESULTS

Note that the schedule that was followed in the school where the subjects were seen

twice a week is the one that is reported here. In the second school of the study, each of the

three main phases described below took longer to accomplish. However, the results for

both schools are included.

First Three Sessions
There was considerable variation in the approaches used by subjects during these

three introductory sessions of the study. Nevertheless, there were two overriding themes.

One was the ease with which subjects took to a functional representation of the word

problems. Representing situations such as, "For an evening's work, you are to be paid 10$

plus 0,15$ for each bag of peanuts that you sell," as generalized procedural statements,

that is, as

no. of bags x 0,15 On profit for sales
profit for sales + 10,00 gives evening's pay

posed no apparent difficulties. That subjects had already drawn a table of values using ng,

pf bags and evening's pa' as their column headings helped them considerably in deciding

what to specify as input and output variables. After they had entered the above program

into the computer and had tried out a few values for no. of bags they were then given the

question to go with the above problem situation, that is, "What sales are needed if you are to

earn 25$." It was at this point that several different approaches emerged.

Two of the children continued to input trial values until the program produced an output

of 25$. Two others mentally used inverse operations (i.e., they told us that they had tried

(25 10) / .15) in order to more quickly arrive at a value for the input variable that would yield
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25 as output. Most of the others did not see any value in using the program to solve these

"easy" problems. Since the problems of the three introductory sessions were primarily of

the ex + b = c type, they immediately saw that they could solve them by using their old

arithmetic approach (i.e., use inverse operations--although there is some evidence to

suggest that they were not necessarily aware that this is what they were doing).

Thus, the second theme for the results of these first three sessions is the
predominance of attempts to use inverse operations to solve these problems, that is, to

bypass the written functional representation that they had generated for the problem
situation and to use their old arithmetic solving methods wherein their representation of the

problem was not clearly separated from their solving methods.

Sessions 4 to 8
From the fourth to the eighth sessions, subjects were asked to verbalize their own

question to go with each of the presented problem situations. Most of the problems that

were generated were ones that a "function program" could answer. For example, to the

situation, "The number of students in your school is 15 times the number of teachers," one

pair of children suggested that "if the number of teachers was 10, they could calculate the

number of students." Another pair suggested that they could find out the number of
teachers and students altogether. However, one subject, who had been very strong in the

use of inverse operations during the first three sessions, proposed that "if we knew the total

number of persons, we could find the number of pupils and the number of teachers."

After solving their own problems, they were then presented with our question.
Sometimes this required the addition of a line or two to their program; nevertheless, it posed

no difficulty with respect to either extending their program or changing the name of the
output variable.

Since most of the questions that the subjects proposed were input-output types of

questions based on a hypothetical value for the input variable, there was no evidence of the

use of inverse operations while subjects were working on their own questions--except for

two subjects, one of whom was discussed above. When we presented our question
afterward, the majority continued to rely on the functional representation that they had been

using for their own particular question (or an extension of it) and to solve the problem by trial

values for the input variable.

Session 9 Onwards
In Session 9, subjects were presented for the first time with the entire problem at once,

that is, with both the problem situation and the question. The first problem of this session

was an ax + X = c type, that is, one where the use of inverse operations involving simply c

and a would not lead to success: "The price of a radio is 33 times the price of a cassette. If a

radio and a cassette together cost 324,70$, what is the price of each?" For half of the

subjects, the spontaeous approach was to divide 324,70 by 33--even before trying to
generate a functional representation of the problem. For the second problem of that
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session (a problem of the type b - (dx + eax) = c), we again saw the same tendency to
incorrectly use inverse operations (i.e., (b - c) / (d + e)) when the entire problem was
presented at once.

That the problem situation and question continued to be presented together in
succeeding sessions had the effect of provoking some subjects--for at least the next two or

three sessions--to first try inverse operations, both for the simple problems (e.g., b - ax = c),

as well as for the more complex ones (e.g., x + ax + bx = c). With the simple problems, they

could succeed using their method; with the more complex ones, they were able to see that

their inverse-operations approach was not leading to a correct solution. They seemed to

become more aware that, for the more complex problems, they would not be successful

unless they used the tools that were being made available to them. In the sessions that

followed, they did not, in general, attempt to use inverse operations except for one problem

in Session 16 (x + ax + (x + b) = c) for which one subject used his calculator to figure out
(c b) / a in order to try and find more quickly an appropriate trial value for the input
variable.

From Session 18 onwards, many of the problems that were presented were those that

can be modeled by equations with occurrences of the variable on both sides (e.g.,
ax= b + eL ax± b = cx ± d). There was no evidence to suggest that subjects
found the generating of a functional representation for these problems any more difficult

than for the preceding equation-types. In actual fact, the translation of these word problems

into a set of one-operation relations is no different from the translation of simpler problems

that do not contain several occurrences of the variable on both sides of the equation. For

these problem-types, none of the subjects attempted to use inverse operations as a
spontaneous first approach. This suggests that they were beginning to realize, in perhaps a

vague way, that for certain kinds of problems, their old arithmetic methods would probably
not work.

CONCLUDING REMARKS

The conclusions to be drawn from this work are tentative at best, since the study was still

in progress at the time that this analysis was done. The findings from the first 22 sessions
with our subjects suggest the following:

1. A functional approach to representing the relations of certain classes of problems was

extremely accessible to the seventh grade students of the study, thus supporting the
findings of Sfard and Clement et al. with respect to the viability of "operational"
representations.

2. The technique of separating problem situation from question aided all subjects in

developing a "forward-operations, functional approach" to representing problem situations;

however, not all subjects considered this representation useful in solving certain types of

problems (e.g., ax + b = c). A minority of them preferred to use inverse operations for these

problems. It was only when the problems became routinely too complex to be solved by

inverse operations that these subjects began to use the functional representation.
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3. The ease with which all of the subjects were able to both represent and solve problems

from a fairly wide range of situations, including those that, according to Filloy and Rojano, are

traditionally more difficult to represent and solve (e.g., ax + b = c & + d), suggests that

this functional approach is an avenue worth pursuing as an entry into one of the more typical

modes of representation--the algebraic equation. It would seem to be a small step to move

from the forward operations of the functional representations that were used in this study to

the forward operations of equation representations. In fact, the second phase of our three-

year project will be focused on this very aspect.
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ABSTRACT IMPRESSIONIST ALGEBRA

David Kirshner
Louisiana State University

The processes of algebraic manipulation are compared to
nonrational processes of abstract artistic expression.

My painting is not literary. If I place a cow on a roof there is
not a literary reference. It is a kind of logic of the illogical; a
world where anything is possible. (Marc Chagall)

My purpose in this talk is to present a new way to think about algebraic thinking. As the

intent is to stimulate rather than convince, I ask that you consider the explanatory possibilities of

the ideas presented prior to applying the usual and necessary criteria of critical evaluation. These

perspectives clash in fundamental ways with established positions in the psychology of

mathematics and would be easy to dismiss reflexively rather than reflectively; a response which I

ask you to forestall.

One of the most deeply and universally held belief about mathematics is that at base it is a

domain of deliberate, rational intellection. Mathematical theory stands as a pinnacle achievement

of human rational ingenuity, and this aspect of mathematics often informs our work as

educationalists and psychologists. Perhaps as a reflection of this influence, theories of skill

acquisition in algebra generally have a top-down character. Skills are understood to result from

the assimilation and coordination of explicitly given propositions. It is this model of algebraic skill

and its acquisition that is challenged in this paper.

The most comprehensive exposition of this view is to be found in the accumulating writings

of John Anderson and collaborators (e.g. Anderson, 1983; 1986; 1987; Neves & Anderson, 1981).

They describe in sufficient detail for computer simulation how fluency in a variety of domains

including geometric proof and algebraic symbol manipulation comes to be achieved through

initial instruction and subsequent practise. Anderson begins with the fundamental distinction

between declarative knowledge and procedural knowledge, asserting "all incoming knowledge is

encoded declaratively; specifically, the information is encoded as a set of facts in a semantic

network" (Neves and Anderson, 1981, p. 60). His theory amounts to a detailed account of how

knowledge is transformed from declarative to procedural form as skills are consolidated.

While Anderson's theory provides the most comprehensive statement, virtually all theories

in the psychology of algebra subscribe to the same basic premise. For instance Mau (1980)

proposes that extrapolation techniques are applied to a base of explicitly given declarative rules in
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creating the actual procedural rules of algebra:

[T]he knowledge presumed to precede a new problem, usually takes the form of a rule a

student has extracted from a prototype or gotten directly from a textbook. For the most part

these are basic rules (such as the distributive law, the cancellation rule, the procedure for

solving factorable polynomials using the zero product principle) that form the core of the

conventional textbook content of algebra. These are referred to as the base rules. (p. 95)

The top-down view of algebraic knowledge is particularly evident in research which

conceptualizes algebraic manipulation as problem solving. For instance Wagner, Rachlin and

Jensen (1984) present skill acquisition as a rational process resting on "rote memorization of

formulas and algorithms" (p. 7):

A basic premise of this study was that the learning of algebra, beyond the level of rote

memorization of formulas and algorithms, can be regarded as a kind of problem-solving

process. That, even the application of formulas to "routine" textbook exercises involves

some degree of problem-solving activity on the part of most students, at least initially. (p. 7)

These examples sample the widespread belief that algebraic skill is acquired through rational

assimilation of the explicitly given rules of the curriculum, and hence that doing algebra can be

considered a rationally-based activity.

A NONRATIONALIST ANALYSIS

Error analyses have been prominent in the development and evaluation of theoretical

frameworks in algebra, it being reasoned that the processes of learning are most easily

apprehended at their points of breakdown. Fadia Nasser, completing a masters degree at Tel Aviv

University (Nasser, in preparation) described to me her attempts to classify and explain the

following errors which she observed in the work of Israeli secondary school mathematics

students:

xY .x' = (x.x )Y'' xY ..x' = (x + xY.x' = (x.x)"' x5 x' = (x +x)Y+'

Traditional perspectives must hold that such errors are a result of misappropriating,

miscoordinating or misunderstanding explicitly given rule such as xY = xY 1'. Below is a

different kind of analysis of the first of these errors in which the building blocks of cognition are

taken to be not explicitly given rules but syntactic relations of a very general and universal sort. I

provide no empirical support for the details of this analysis, the intention being to impart the

"flavor" of processes to be more rigorously studied elsewhere.
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Following is a possible psychological derivation of the x)...x' = (x.x)" error:

parse associative movement assoc visual.assoc mull parse
xY .x' -->(xY).(f)>[(xY).x]' [x(xY)]' >[(x.x )r]`-)Rx.x)1(3-)-)Rx.x)P..)-(x.x)Y..

Technical Notes

1. The step marked movement could have been described as commutative. Movement,

however, has the exponent actually jumping from one "x" to the next; the recurrence of

"x" being incidental. If movement is not itself a basic relation, a detailed analysis might

look something like this:

parse commutative assoc comma assoc parse
xY .z -a (.0 ).z z -(xY) (z -) (x.zy x.(z) -) x.e

2. The step marked visual.assoc differs from ordinary associativity in that it operates on

concrete visual entities rather than (possibly) on abstract symbolic entities. For instance if

we link horizontal juxtaposition with some abstract entity, multiplication, and diagonal

juxtaposition with abstract entity, exponentiation, then ordinary associativity can have an

abstract character, [a multiplication b] exponentiation c

a multiplication [b exponentiation c], as well as a visual character,

[a horizontal b] diagonal c -, a horizontal [b diagonal c]. But visual.assoc does

not work as true associativity at the abstract symbolic level,

[a exponentiation b] exponentiation c ) a exponentiation [b multiplication c],

only at the visual level, [a diagonal b] horizontal c > a diagonal [b horizontal c].

This raises critical questions about whether the syntax of algebra is encoded in visual or

abstract terms. (See Kirshner, 1989, for a related discussion.)

DISCUSSION

Examining the applications of "associativity," "commutativity," "distributivity" and

(perhaps) "movement," above, shows them to be much broader that the formal mathematical rules

normally associated with these terms. The perspective advanced here is that such broad syntactic

relations are not derived from mathematical experience, but are fundamental and very general

elements of human cognition. Perhaps such syntactic relations are tied to natural language

grammars which also employ associative, commutative and distributive structure. Perhaps they

underlie the syntactic structure which artist Marc Chagall (above) identifies as the "logic of the

illogical."
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It is the image of elementary algebra as "symbol play" that I most want to convey in this

paper. Algebraic manipulation in its synchronic as well as its diachronic contexts can be regarded

as part of a natural syntactic outpouring of the human psyche. Such a perspective requires careful

dissociation of the contemplative character of mathematical theory from the aesthetic character of

notational form which William Rowan Hamilton (1837) reminds us are distinct motive forces for

engagement in mathematics:

The Study of Algebra may be pursued in three very, different schools, the Practical, the

Philological, or the Theoretical, according as Algebra itself is accounted an Instrument, or a

Language, or a Contemplation; according as ease of operation, or symmetry of expression,

or clearness of thought, (the agere, the fari or the sapere,) is eminently prized and sought

for. (p. 293)

I propose that attaining and expressing algebraic skill is principally a linguistic rather than an

intellectual exercise.

To sketch out this scene in more detail, it is not only errorful performance which is to be

conceived as resulting from creative syntactic invention, but competent performance as well. For

instance, application of the xY..x' = xY "1' rule can be regarded as having a similar derivation to

that presented above; perhaps embodying some element of distributivity in the collecting together

of occurrences of "x". The point, however, is not simply that the rules of elementary algebra are

acquired non-rationally. I propose further that the processes of doing algebra remain fluid,

converging eventually towards stable rule structures which need not correspond with the rules

which happen to fill the algebra textbooks, and subsequently our introspective reports about our

algebraic knowledge. (See Kirshner, 1987a, Ch. 5; and Kirshner, 1987b, for examples of

introspectively inaccessible rule structures.) In other words, the logic of doing elementary algebra,

like the logic of doing abstract art, is implicit (though formal mathematical theories provide

interesting reconstructions of the former).

I have no evidence for the specific details of the xYx' = )" derivation presented

above, but some broader empirical considerations suggest that some such syntactic explanation is

likely to be correct. If, as postulated in traditional approaches, algebra learning rests upon rational

assimilation of explicitly given rules, then errors ought to reflect the rational and conceptual

confusions of the novice. But the errors documented by Nasser (above) like the errors generally

acknowledged to be endemic to algebra learning have a clearly syntactic rather than semantic

character. Surely it is futile to attempt to predict with any reasonable degree of specificity the

presence of the xY x' = (x Or' error on the basis of semantic and conceptualcategories.
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If error analysis paradigms are to be used honestly and to full effect then errors must be

viewed as perturbations of competent performance. It follows, then, that competent performance,

like errorful performance, is syntactically grounded. I suggest that the consistent opting for

rational analyses of algebraic skills in the psychology of mathematics reflects pretheoretic

commitments which need to be reassessed.

Doing mathematics can be likened to playing a game of jump rope. Rope skipping as a

social activity is regulated by rules; rules to make sure that everyone gets a turn, to determine who

has won, etc. But we rarely lose sight of the fact that the purpose of skipping is to exult in-

coordinated motion; not to follow rules. In the case of mathematics, perhaps the functional

imperatives of academic pursuit tempt us to forget that a primary motive force of mathematical

activity is exultation in the native human capacity for syntactic expression, and that reasoning

serves crucial but ancillary functions of organizing and structuring mathematical expression and

of delimiting it from other modes of syntactic expression such as abstract art.

References

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 94(2), 192-210.

Anderson, J. R. (1986). Knowledge compilation: The general learning mechanism. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.). Los Altos, Ca: Morgan Kaufmann.
Machine learning: An artificial intelligence approach, Vol II, 289-310.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary

and elementary essay on algebra as the science of pure time. Transactions of the Royal
Irish Academy, XVII, 293-422.

Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in Mathematics
Education, 20(3), 274-287.

Kirshner, D. (1987a). The Grammar of Symbolic Elementary Algebra. Unpublished Doctoral
Dissertation. Vancouver: University of British Columbia.

Kirshner, D. (1987b). The myth about binary representation in algebra. Proceedings of the 1987
Annual Meeting of the International Group for the Psychology of MathematicsEducation.

Matz, M. (1980). Towards a computational theory of algebraic competence. The Journal of
Mathematical Behavior, 3, 93-166.

Nasser, F. (in progress). Algebra Errors. Masters thesis, Tel Aviv University.

Neves, D. M. & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the
automatization of cognitive skill. In J. R. Anderson (Ed.) Cognitive skills and their
acquisition. Hillsdale, NJ: Lawrence ErlbaumAssociates, 57-84.

Wagner, S., Rachlin, S. L. & Jensen, R. J. (1984). Algebra learning project: Final report
(Contract No. 400-81-0028). Washington, DC: National Institute of Education.

39

5'



CANCELING CANCELLATION: THE ROLE OF WORKED-OUT EXAMPLES
IN UNLEARNING A PROCEDURAL ERROR

Margaret S. Smith
Edward A. Silver

Learning Research and Development Center
University of Pittsburgh

This study examined the effectiveness of using worked examples
to remediate a procedural error in the domain of algebra.
Extrapolating from research on learning from worked examples,
it was hypothesized that exposure to instructional treatments
involving the use of correctly worked examples or incorrectly
worked examples, in which the cancellation error was made
salient, would help students eliminate that procedural error from
their repertoire. Both treatments were successful in helping
students significantly reduce the number of cancellation errors
made when simplifying rational expressions. Evidence suggests
that worked-out examples may be useful in helping students
detect and correct procedural errors.

Procedural errors are nearly ubiquitous phenomena of interest to researchers studying

mathematics learning and performance. For many researchers, the challenge has been to

organize and classify the errors made in a specific domain and to understand the origins and

consequences of the erroneous procedures (e.g., Brown & Burton, 1978; Matz, 1982). It has

been argued that procedural errors often occur when students lack linkages between conceptual

and procedural knowledge (Hiebert & Wearne, 1986) or have only partial, incomplete linkages

(Silver, 1986). VanLehn (1986) contends that procedural errors result from insufficient and/or

ambiguous examples that cause students to overgeneralize. According to Matz, procedural errors

in the domain of algebra are often the result of "reasonable, although unsuccessful, attempts to

adapt previously acquired knowledge to a new situation" (1982, p.25).

Matz identified three error categories based on the presumed origin or source of the error:

extrapolation errors, errors reflecting impoverished knowledge, and execution errors. Matz's

third category contains errors that are of a purely procedural nature. By contrast, the first two

categories contain errors that appear to result from disconnections between conceptual knowledge

and the set of symbolic referents. For example, Matz asserts that some errors called

extrapolation errors in her scheme are generated when a student, confronted with a problem

that bears some surface similarity to a problem for which a correct procedural rule is known,

incorrectly applies the old rule to the new situation. She argues that these errors are

conceptually based and result from inadequate knowledge of semantic constraints.

One particular error that Matz identified as an extrapolation error is the well-known
1

cancellation error, in which an expression like is incorrectly equated to2x + y 2 + y
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According to Matz's analysis, this error is generated by the incorrect generalization of a correct

simplification rule that equates aaca to or x. According to Matz's analysis, this error results

from an inadequate knowledge of the semantic constraints implicit in the correct rule, such as

requiring that the numerator and denominator have a common factor.

There are at least two important pedagogical issue related to errors. One issue is how to

help students learn without errors. In a study of the use of worked examples as a substitute for

equation solving in learning algebra, Sweller and Copper (1985) found that students who had

been presented with worked examples made fewer errors on test problems of the same type than

students who were given conventional problems in which they generated their own solutions.

Sweller and Cooper contend that this improved performance is due to the fact that acquisition of

expert-like procedural and equation-solving schemas is enhanced by the study of worked-out

examples, in which students can more easily and directly process the relationships between and

among the initial state, the goal state, and the intermediate steps needed to achieve the goal. In

contrast, students who solve conventional exercises focus their attention on goal attainment and

pay less attention to relationships among solution states, thereby inhibiting the development of

powerful schemas. In closely related work, Zhu and Simon (1987) compared the performance of

students who learned through conventional instruction to solve quadratic equations by factoring

and students who learned by studying a carefully constructed set that combined worked-out

examples and conventional exercises. Zhu and Simon reported that the students who studied

worked-out examples were at least as successful on all performance measures than the students

who had learned by conventional methods. Moreover, evidence obtained from interview

protocols indicated that the students who studied the worked-out examples did not simply learn

rote procedures but rather learned with understanding. According to Zhu and Simon, this

successful learning from examples is due, at least in part, to the fact that the students who

studied the worked-out examples were actively engaged in their learning spending their time

studying the examples and examining relationships among solution steps rather than

passively listening to a teacher's explanation.

A second pedagogical issue related to procedural errors is how to help students unlearn

errorful procedures that have become part of their repertoire. One approach to unlearning

involves increasing students' ability to detect their errors. In a study of error-detection processes

in statistical problem solving, Allwood (1984) suggested that error detection may be initiated

when a student makes a match between a specific error stored in memory and an occurrence of

the error. He also noted that errors were more salient to good problem solvers (those who had

the fewest errors in their final solutions); therefore, they detected a larger portion of both their

conceptual and procedural errors and were more suspicious of problems in which specific errors
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might occur. Incorporating error-detection activities into mathematics instruction may help

make certain errors more salient and help students to recognize and correct errors that are part of

their equation-solving repertoire.

The purpose of the study presented here was to investigate the unlearning of one specific

algebra procedural error cancellation and to compare two treatments designed to help

students detect and correct the error when simplifying rational expressions. One treatment

involved the use of correctly worked examples, and the other treatment involved using

incorrectly worked examples, in which the cancellation error was made salient. Of particular

interest was the relative effectiveness of these treatments in helping students eliminate the

cancellation error from their equation-solving behavior.

METHOD

Subjects

The subjects were 18 college students (10 female and 8 male) enrolled in an elementary

algebra course offered through a College of General Studies which attracts non-traditional

students. The students ranged in age from 18 to 55 years and had diverse mathematics

backgrounds including some having no prior experience in algebra, some having had a lack of

success in their first algebra encounter, and others exhibiting high levels of mathematics

anxiety.

Design

Testing occurred near the end of the term in two sessions that were separated by one

week. During the first session, subjects completed a paper-and-pencil pretest containing five

+ 477problems involving cancellation (e.g., simplify 4
). This type of problem was

chosen because the subjects in the study had just completed a section on solving quadratic

equations and many students made cancellation errors in the final steps of solving quadratic

equations. Following the first session, the pretests were corrected and each subject was

randomly assigned to one of the two treatment groups.

The second session began with the returning of the corrected pretest and administration of

either Treatment 1 (T1) or Treatment 2 (T2). Treatment 1 (Correctly Worked Examples)

consisted of five worked-out examples, in which rational expressions, similar to those which

had appeared on the pretest, had been simplified correctly. The instructions stated that all

problems were solved correctly and that students should study the procedure used for each

exercise. Treatment 2 (Incorrectly Worked Examples) used the same five rational expressions as

T1; however, in T2 the examples were simplified incorrectly and the cancellation error was
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2
8 +43 a +43

made (e.g.,
4 4

2 + 'NG , in which the first term of the numerator and
1

the denominator are divided by a common factor without taking the second term of the

numerator into consideration). The instructions stated that each problem had an error which

should be identified and explained. Students in each treatment group were given ten minutes to

complete the activity, after which they were given the posttest, which was identical to the

pretest.

RESULTS

Table 1 reports the mean success and error rates by treatment group for the pretest and

posttest. The data clearly indicate that each treatment was successful. Students in each

treatment group solved significantly more problems and made significantly fewer errors on the

posttest than on the pretest. Although there were many cancellation errors on the pretest,

students in each treatment group made essentially no cancellation errors on the posttest. There

was no significant difference between the two treatments in their effects on students'

performance.

Table 1 Mean Production of Correct Solutions and Errors on Pretest and Posttest

Treatment Session Mean Number

Correct

Mean Number

of Errors

Mean Number

of Cancellation Errors
T1 Pretest 2.8 2.2 2.1
(N=9) Posttest 4.8 0.2 0.1
T2 Pretest 2.0 3.0 2.4
(N=9) Posttest 4.7 0.3 0.0

Combining results for the two groups, the mean score on the posttest was 4.7 (out of 5)

while the mean pretest score was 2.4 (out of 5). Of the 18 subjects, 16 produced error-free

posttests (8 from each of the two treatment groups) while only five subjects produced error-free

pretests. Overall success on the problems increased from 43 correct responses on the pretest to

85 correct responses on the posttest. The subjects produced a total of 47 errors on the pretest,

41 of which were classified as cancellation errors, whereas the posttest yielded five errors, only

one of which was classified as a cancellation error.

The treatments were equally successful, but not equally easy to use. Students assigned to

T1 had no difficulty using the treatment sheet, but some students had difficulty using T'2. In

particular, some students had questions about why the problems were incorrect and sought

explanations from the instructor or other students to clarify their understanding. Perusal of the

treatment sheets for T2 students revealed that (a) some students gave a written explanation of
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the error but others did not, and (b) some students reworked the T2 problems but others did not.

Despite some confusion in using T2, students were apparently able to benefit greatly from the

treatment since they exhibited almost perfect performance on the posttest a significant

improvement over their pretest results.

Although it was not required, or even suggested by the instructor, most students decided

to 'redo' the problems they had done incorrectly on the pretest. About one-half of the students

who had made errors on the pretest corrected their errors before taking the posttest; an additional

one-quarter corrected at least some of the errors they had made on the pretest. The proportion of

students who exhibited this behavior was the same for the two treatments.

DISCUSSION

Sweller and Cooper (1985) argued that having high school students study correctly

worked-out examples instead of solving conventional exercises facilitated the acquision of

desirable equation-solving schemas and enhanced the development of expertise. In this study,

the use of worked-out examples has also been shown to be effective when used with more

mature subjects in a remediation setting. Moreover, the findings of this study also suggest that

students may be able to learn effectively from incorrectly worked-out examples, in which a

particular error is made salient. The success of treatment 2 may be due to an increased

sensitivity to errors that lead to a triggering of an error detection and correction process.

Given the simplicity and short duration of the treatments, the strong positive results are

quite surprising. Both treatments were extremely effective in helping students eliminate their

cancellation errors. The dramatic success of the treatments stands somewhat in opposition to

Matz's contention that the cancellation error is due to a lack of conceptual knowledge, since it

is unlikely that these very brief treatments would have effectively corrected such a deficiency.

Perhaps instead, for the population in this study, the cancellation mistakes represented

execution errors caused by not carefully monitoring the procedure. If so, then it is reasonable

that exposure to correctly or incorrectly worked-out examples helped the students to be

somewhat more thoughtful or more aware of the existence of the cancellation error and its

consequences.

Why should these brief, simple treatments have been so effective? Related work on

learning from correctly worked examples (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989;

Zhu & Simon, 1988) has suggested that students learn successfully from worked examples if

they actively process the information presented in the examples probing connections between

steps and solution states and also between information presented in the task and information

stored in long-term memory. Although the treatments were brief, it is likely that subjects were
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actively engaged in learning from the treatment sheets. Further research is needed to examine the

behavior of subjects as they study either correctly or incorrectly worked-out examples. Further

research is also needed to study the long-term consequences of these treatments. Examination of

subjects' behavior on their final course examination suggested that the treatments may have had

positive long-term effects, but more convincing evidence is needed. Have students effectively

eliminated the error or does the error lie submerged waiting to reappear in another context? If

these treatments were used in earlier algebra instruction, at other points in the curriculum when

cancellation errors commonly occur, would the student be able to avoid the error in the future

when faced with problems that traditionally invoke the cancellation error?

The availability of the pretest may have acted as an impetus for students to relate the

information on the treatment sheets to their own behavior in simplifying rational expressions.

Many subjects corrected at least some of their pretest errors after studying the treatment sheet.

Since the posttest was identical to the pretest, the correction of pretest errors during the

treatment is likely to have contributed to the increased success on the posttest. Nevertheless, it

is unlikely that the total, dramatic improvement for all subjects, including some who did not

correct their pretest during treatment, could be due simply to this unintended aspect of the

treatments. Given the extent of the success achieved, it is more reasonable to assume that

subjects were able to learn effectively from the treatment and incorporate this learning into their

behavior when simplifying rational expressions on the posttest. Moreover, even if correction of

the pretest proves to be a significant factor in the improved performance, the dramatic impact

still needs to be explained. Further research is needed to clarify the basis for the success of

these treatments.

Although the use of worked examples is fairly common at the early stages of

mathematics instruction aimed at teaching correct procedures, worked-out examples are usually

abandoned in favor of conventional problems after students have some familiarity with the

procedures involved. The study reported here suggests that correctly or incorrectly worked-out

examples may be used successfully to help students detect, avoid and correct their procedural

errors. Studies concerning the efficacious use of worked-out examples in teaching procedural

skills, or other mathematical topics, may provide important information for reformers of

mathematics curriculum and instruction who wish to increase the amount of class time available

for higher-level mathematical thinking, reasoning and problem solving.
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METHODOLOGICAL ELEMENTS FOR THE RECONSTRUCTION
OF AN ANALYSIS DIDACTICS: THE CASE STUDY OF CONVERGENCE

By Rosa Maria Farfan
Centro de Investigacion y de Estudios Avanzados del IPN

Mexico

The present discussion is the first part of a research aiming to
incorporate heuristic processes and reasonings in the reconstruction
of educational mathematics discourse, specifically as related to the
concept convergence of infinite series and its association with the
notion of stability in fluid systems. We present the characterisation
of phenomenology Intrinsic to this concept, as well as that of the
constructs which conform such phenomenology. This methodological
approach permitted us to establish the relationship between the
stationary state and the study of convergence of infinite series.

Some Opening Considerations

The starting point in our research is to consider the epistemological perspective in

Mathematics education research [8,23], and the need to incorporate therein the

study of didactic phenomenology, in order to enrich educational discourse [10]. In

its first stage, which we report here, the purpose of the study was to characterize the

intrinsic phenomenology of the concept of infinite series convergence, both numeric

and functions series, i.e., we wished to find the phenomena which characterise the

concept itself, in its historical genesis. These phenomena have been buried under

a process of didactical transposition that nowadays prevents us to perceive the

essential meanings which permitted its construction [5].

When analysing original sources, we perceive the presence of constructs

inherent to the formation of the concept, i.e., all the scaffolding which the subject

builds up when acting on the object, in order to gain access to the concept. In this

process, and in which a heuristic procedure is unavoidable [5]. Thus, we attempt to

reconstruct the educational mathematical contents, in the light of the basic elements

which formed the theory, and which are now absent from the textbooks. Our
motivation stems from the practice in the National Program for Mathematics
Teachers and Training (*) (University level), and from research reports [17,21,22]

where difficulties to gain access to Calculus concepts have been discussed.

(*) Programa Nacional de Formacion y ActualizaciOn de Profesores de
Matematicas, PNFAPM-Mexico.
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The approach to which we have resorted consists of detecting the
"intellectual abilities" and "reasoning processes" present in the construction of

mathematical theory. Our sources have been, the original texts [9,14,15,19] and

specialised treatises dealing with the history of mathematics in the 19th century
[11,12,20]. We have not ignored textbooks of the 19th century [2,14,18] nor those

that are currently used in our school system, such as [3].

Our approach, while detecting constructions inherent to the concept at the

time it originated, establishes in a natural way, an environment where mathematical

objects acquire meanings, and this sets a pattern for the reconstruction of
educational discourse. This redesign must take into account certain variables, such

as the fact that the epoch's cultural context was different from ours and, therefore,

a straightforward transference is not possible. Hence, the task of "adapting" to our

time must necessarily pass through an experimental phase. At the present time, we

are in the process of designing an experimental setting which will constitute the

second part of our research; nevertheless, we have obtained partial results with the

mathematics teachers involved in the training Program who teach in engineering

schools (not yet reported). Such results point to the feasibility of the methodological

approach we have chosen.

Characterization of Intrinsic Phenomenology

Work with series - although not the study of their convergence - is

considered from the Middle Ages, a time when the first efforts were made to

establish the scientific bases for the study of variability and change phenomena.

Thus, we find in [16] the statement and solution of a variability problem where

geometry is shown to be handled as a "useful tool" [6]. The concrete referent in

which the problem arises is strictly physical, a constant characteristic throughout the

development of Calculus. Another major trait of work with series which occurs from

the 14th, to the 18th centuries, is the computation of the sum in question, except

perhaps for Taylor's series [1], which becomes a "prediction" instrument. A
remarkable example of sum computation is given by Euler, who uses a very peculiar

style of mathematical discovery in the 18th century, called "eulerian induction" by

Abel. Euler's solution is based on the establishment of analogies [6]. In this
conceptual stage, "Computation of sums of infinite numerical series", an
epistemological obstacle, made itself apparent, and prevented advancing to the next

phase, namely, the fact of attributing to the sum the same nature as that of the
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terms in the series. The roots for this are to be found in the concept of function as

an arbitrary analytic expression which prevailed in the 18th century.

One might think, based on the examples given above, that proceeding
heuristically is a characteristic of the times when answers are sought to concrete

problems. But this is not so. In the realm of Calculus itself, theory construction

recourse is made to this "procedural style"; thus we find that the first list of
convergence criteria for series in modern terms, given by Cauchy [4] derives from

the comparison with series of which their sum is known [7].

For Cauchy to undertake the task of giving convergence criteria, it was first

necessary to recognize that a study of convergence was required. This came to pass

with J. Fourier's work (1822) on heat transference. In this work, an equation
governing the behaviour of this phenomenon is deduced by the use of the
"parametric prediction" instrument which was natural at that time [1]. What is
significant in that work for our purposes, however, is the treatment of the problem

following the establishment of the equation which consists in finding the
PERMANENT STATE the temperatures will eventually reach, without suffering

further changes with time.

The solution to the problem is an infinite trigonometric series whose
coefficients must be determined. Since the series represents a system of
temperatures, and since these cannot be infinite, the convergence of such series is

established. In order to prove this assertion, Fourier uses several resources ranging

from "eulerian induction" to transforming the solution into an integral - showing

that this tends to a constant - and going through several particular cases [13].

Through-out this development there is a presence of the concrete physical referent

which allowed him, in spite of "false" considerations - according to present day

mathematical knowledge - to start the study of convergence. And even more, since

the stationary or permanent state is a single one, so is the solution, thus showing not

only the convergence of the series but also the unicity of the differential equation

solution. In short, finding the stationary state necessarily leads to the verification of

convergence and, therefore, to its study; thus viewed, the physical problem and the

mathematical concept are indistinguishable. Therefore, consideration of the
stationary state marks an epistemic break; the problem of computing infinite series

sums is transferred to the study of their convergence.

At present, both phenomena are equivalent in textbooks; and yet, in the

conceptual terrain they are not. This conceptual stage, "the study of convergence,"
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gives rise to a new difficulty related to the concept of uniform convergence, which

Fourier called "fast" as distinguished from the "slow" one, or non-uniform, into which

we will not go here.

In sum, when determining the phenomenology of the concept under study,

one observes that physical contexts are necessary to establish two conceptually

different stages, and also that for each of these we detect the presence of the
constructs used to conform the concept, as well as the epistemological obstacles

which prevent us to proceed to the next stage. At the risk of being too schematic,

we present the following comprehensive view, which embodies everything mentioned

above.

Intrinsic Phenomenology of the Convergence
Concept in Its Inception.

Stages

*Computing

sums of

infinite

numerical series

*The study

of series

convergence

Concrete
Referent

Rl

epistemic break

R2

Constructs

Sl
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CONCEPT IMAGE IN ITS ORIGINS WITH PARTICULAR
REFERENCE TO TAYLOR'S SERIES

Ricardo Cantoral
Centro de Investigachin y Estudios Avanzados, Mexico

In the development of research focused on the use of physical
thought in the construction of mathematical concepts and processes
specifically related to the notion of prediction in physics and to the
appearance of the analiticity notion in mathematics, we have
characterized the concept images underlying the Taylor's series
concept, which in various contexts and at different times have been
established as paradigms. This became possible after the
establishment of concept intrinsic phenomenology. The present work
constitutes the epistemological study of the research.

One of the research lines which has recently shown a vast fecundity in the

didactics of sciences, is the one focusing on the study of misconceptions, and it has

shown the existence of conceptual schemes which are essentially unalterable by

knowledge taught at school. This has heralded the need for a correct interpretation

of the epistemic frameworks wherein such knowledge unfolds and it has made it

possible to point out its importance in those aspects inherent to the nature of
concepts and processes, as well as its possible phenomenological contextualisation

[6]. In this direction, we have sought the concept images of a Taylor's series in its

origins and have pointed out some clues for a reconstruction of its nature. The
selection of the concept images we report here was done after consulting and
interpreting three kinds of references, namely, the usual treatises containing
historical and epistemological discussions [7-10]; a few old textbooks renowned for

its influence in education (covering from late 17th century to early 20th century)

[11-14]; and, of course, original writings [15-32]. The choice of this theme obeys to

the recognition of its repeated presence as a driving idea in a vast diversity of

conceptual constructs in the beginnings of mathematical physics.

CONCEPT IMAGES

Next, we present various paradigmatic schemes which are related to Taylor's

series in several contexts and historic moments, and which we classify in eight

models:

§ 1. Binomial Regularity Model. This concept image features the
perception and use of regularity in binomial developments. It focuses on numbers
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and variable quantities, and even though it does not specify the latter's variations,

it shows their operative similarity with numbers, within this model it is proposed to

build several numerical tables for simple and reliable computations, and also to

extend the results of early 17th Century handling of decimal numbers, to the notion

of variable quantity. Characteristic results include Pascal's Triangle, Newton's

Binomial, and Newton-Gregory's Interpolation Formula. Taylor's series appears in

all of them, even if it is not recognized as the organizing pattern [17-19,21,22].

§ 2. Variable-Variation Model. It consists in recognizing and systematically

using the idea that the part contains the information of the whole; i.e., whereas the

variation of some variable quantities with respect to others--physical or geometrical-

-is studied, it is recognized that instantaneous or local variation provides integral

information on the phenomenon. With this model, a mathematical description is

sought of the laws of planetary movement, and for the movement of rigid bodies and

ideal fluids on Earth; also sought is the construction of a concept-algorithmical

instrument which studies variation and change in nature. Let us say that the context

in which this model arises is characterized by the answers it gives to questions posed

under the light of the Galilean break with Aristotelian physics. And also by the

accumulation of a great variety of concrete problems where the drawing of tangents

and curve quadrature are recognized as inverse problems. Notable results here

include the appearance of an algorithmic Calculus, the coining of terms for concepts

such as flexion, fluent, force, acceleration, differential, and integral, and the fact that

the Series comes to be identified with the phenomenic principle of the Fundamental

Theorem of Calculus [14-16,19-21].

§ 3. Parametric Prediction Model. It refers to the determination of the
future state (the neighboring state, more widely speaking) by means of the
information on the current state (the de facto state, more generally). It already

studies variables as eventually quantifiable objects. In other words, once the
significant parameters of variables and of their successive variations have been

determined, the future (neighboring) state is predicted. This model does not
necessarily evoke temporal variables; it proposes, for instance, to determine the

temperature within a certain region, when the value at its border is known. Another

result with this model would be a method of proposing differential equations.
Taylor's series is recognized as the adequate instrument for prediction, and it and

each one of its terms are imbued with such meanings. In this approach, one
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observes the use of the notion of orders of magnitude associated with the series, and

a reorganization program in the light of the emerging notion of analicity [14,21,26].

4. Parametric Evolution ModeL This model rests on the
determination of those laws governing the system behavior, provided that the initial

state is known. It studies variables associated to physical descriptions of movement

of rigid bodies, particles, ideal fluids, heat, electricity and magnetism, and generally,

the mechanics of continuous media. In this search for the establishment of a
rational mechanics, a method outlined in Models 2 and 3 becomes more firm;

namely, that in the determination of comprehensive laws, it becomes necessary to

resort to the study of infinitesimal elements. Its results include the theory of
Differential Equations and the initial stages of Complex Analysis [12,15,19,23 -31].

5. Polynomial Approximation Model. This scheme comes very close to

our practice on the Series and it features the reduction of function computation to

the computation of polynomials. To do this, a succession of them is constructed in

such a way that it converges to the function in question, and that they inherit the

point behavior of the function; a margin of error is estimated. Results in this field

would include the method for the construction of such polynomials, interpolating

polynomials and the beginning systematic studies of convergence. This approach,

strongly inspired by the resolution of equations by approximative methods, and uses

the Series as an approximation instrument, and its remainder as the error [11-13,27].

6. Functional Metamorphosis Model. This procedure evokes the
fact of transforming a function into an infinite polynomial expression, while the

notion of function is permeated by that of an arbitrary analytical formula. In this

scheme, series are developed by means of the binomial or through the systematic

application of Taylor's Series and in it the study of convergence becomes more

precise. It focuses attention in the Remainder, and it is used for the resolution of

differential equation problems which are not solved by means of elementary
functions [11-14,24,27].

7. Inductive Generalization Model. This model comes into being

after the recognition of a set of previous results, by using the limit as an organizing

concept, the mean-value theorem for derivatives, and the study of "arbitrary
functions" and their classification in Classes. In it, the Series becomes one more

result of theory, and the function it played in the previous models is here reversed

[11-13,24,27].
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8. Complex Analicity Model. Its roots can be located in the
recognition of derivability in Complex Analysis (a distinction is made from real-

valued functions). Approaches are designed to fundament such an area, based only

in power series, and the analytic continuity property is recognized as belonging to

this approach, as are numerous results on the analytical functions where the Series

is used iteratively [11,12,27,30].

FINAL CONSIDERATIONS

Briefly, we shall say that we have located the presence of a stratification,

by periods, in concept images, when analyzing the origins of the Taylor's Series

concept; in it, we have recognized a life of its own, inherent meanings and specific

contextualisations, as well as uses, in the development of the theory.

By taking stock of general elements, we shall say, broadly speaking, that

17th century concept images are characterized by two traits: first, one centered in

the recognition of the Series images in the development of algorithms and
numerical-algebraic patterns; and a second one, by the systematicity of point studies

of rigid body movement phenomena, as well as of curves. The latter is an idea

which should bear fruits in future Calculus development. In the 18th Century they

featured their presence in the algorithmic consolidation of Calculus, and the
manipulation of series, whereby novel discoveries were obtained, problems with

function given by formulas were approached, as well as others using some special

functions; and this permitted the integration (in the 19th Century already) of the

general theory of real variable and of complex variable functions. The original

source for all this history continued to be mathematical physics, whose horizons

during the 17th and 18th Centuries was limited to the mechanics of particles, rigid

bodies, and fluids, lake, water or air, by applying Newtonian physics to continuous

media mechanics. In the 19th Century, this perspective extended its boundaries

when heat, elasticity, electricity and magnetism, and the electromagnetic theory of

wave propagation, were accepted as (fluid) subjects of study. This interaction

focusing on differential and integral equations, and in variation Calculus, generated

many new concepts and new formulations of problems, new integral formulas and

series expansions. Taylor's Series, therefore, preserves its role as "developer" of new

results [2-4].

These approaches to research allow the perception of knowledge-building

patterns, through their concept images. Just recognizing them is already one result,
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for the action possibilities deriving from them are obvious when we contrast them

with those of modern didactics. The existence of such situations has allowed the

enrichment of didactic communication and the organization of experimental
observations within the framework of the options provided by this approach.

In terms of didactic models for the teaching of Calculus, this research

shows two essential approximations coexisting in current didactics: one stemming

from the works of Newton, Euler, and Laplace, among others, where the expression

of the Series carries with it a meaning pertaining to physical sciences, and which

turns it into a natural construct for a vast diversity of problems; and the other,
proposed by Cauchy's work on analysis, where the Series becomes one more result

of theory, a consequence of the limit concept and of the mean value theorems. As

we know well, the latter scheme is the one present in current Calculus courses, and

the other one, although used in various contexts, is absent from the topics
transmitted in College and University level teaching.
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ABOUT THE HERITAGE IN CALCULUS TEXTBOOKS:
A DEFINITION OF INTEGRAL OR

THE FUNDAMENTAL THEOREM OF CALCULUS?

By Francisco Cordero
Centro de Investigacien y de Estudios Avanzados del IPN

Mexico

Our topic here is the teaching of Calculus at the intermediate and
university levels within our National Education System. The
framework of the present research has been limited, basically, to the
characteristics of mathematical discourse in teaching, particularly as
it refers to Integral Calculus; and also the "measurement" of its
conceptual system, as a result of the teaching practice.

One of the major elements we consider in the development of our research

is the mathematical discourse in teaching. It is precisely its characteristics that we

examine, considering them an unavoidable material basis at any discussion level

involving the teaching of mathematics; in our case, this refers to Integral Calculus.

We pose the problem in the following terms: if we view the teaching of

Calculus as a problem of knowledge transference [2] and we assume that its main

components are teachers, Calculus concepts, and students, then what we wish to

analyze is how the mathematical discourse "behaves" throughout the path: teachers -

concept - student. And then, if no change makes itself apparent during this
passage, we attempt a Redesign of the Didactic Discourse of Calculus (RDDC).

Within our educational system, the teacher-student relationship is such that the

former cannot make the knowledge of Calculus transmissible, whereas the latter

does not succeed in learning it; and this situation has become stable.

One possibility in this approach, which we have chosen, is to study the

behavior of Calculus discourse during the transit, hoping that its product, the

RDDC, actually provokes a change or otherwise breaks this stability which is

detrimental for the teaching process.

Now, then, what is the RDDC? To begin with, the characteristics of the

present discourse have fabricated one single model of Calculus knowledge
transmission, thus provoking a paradigmatic situation. It is here, we believe, where

the parts involving a didactic problem are to be found. Secondly, development of

the RDDC must stem from the practical discourse; its aim should be to understand,

and to make others understand, a mathematical content.
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Considering this, then the RDDC must be viewed, in a certain sense, as

governed by the patterns of pure mathematics, but its standards should not become

a "mathematical obstacle." In other words, a theory develops when we propose a

certain theme; "obstacles" arise incidentally, and are not necessarily a factor in

fostering development. It being so, the RDDC has its own objective, i.e., to make

others understand Calculus, together with the establishment of its own pattern of

mathematical rigorism and its own mathematical tools.

Let us consider one case: the didactics of Integral Calculus (IC). We study

the behavior, in the didactic discourse, of the break with the older concept of
antidifferentiation, due to the use of the new concept, the limit of a sum as justified-

-in modern-day textbooks--by a good development of integration theory. And we

consider the links that might exist between the break and the preceding elements

which made possible the construction of such theory.

The Cauchy-Riemann definition of integration leads to a sui generis set of

mathematical instruments: the partition of intervals, upper and lower sums, the

convergence of a sum. This set of tools we have called the Riemann Apparatus

(RA).

It should be pointed out that the treatment of the RA in this discussion is

based on a pragmatic aspect: the teaching of integration; this, however, is neither

to deny the historical importance of the RA construct in mathematics, nor the

change both qualitative and quantitative--the Calculus of functions, rather than that

of variable quantities--which contributed to the development of Integration Theory.

The situation, in the field of teaching, is as follows. A constant element in

the study of students' behavior faced with the RA is that the few who succeed in

applying the integration methods do not succeed in understanding the integration

process. Moreover, the RA propitiates a new theoretical body which, a priori, is not

linked to the previous one, i.e., Differential Calculus.

One appreciation of a didactic nature is that the Cauchy-Riemann definition

of integration is prematurely presented in the IC discourse and is even, perhaps,

unnecessary [1].

The notion preceding RA is antidifferentiation, which constitutes an
equivalent model, in mathematical contents, to the IC discourse which at present

appears in Calculus textbooks.

In this model, integration appears as a relative concept, i.e., related to a

given differential: "A quantity which through differentiation yields a proposed
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differential is called the integral of such a differential" [3]. Here, the very concept

of integral is linked to the differential of a variable or a quantity, a situation which

leads to the unification of differential and integral Calculus is one theoretical body.

The existence model of an integral quantity is a property which is intrinsic

to the integration concept. In order to install ourselves in an integration problem,

we must necessarily start from a differential, which is derived from a preconceived

quantity. And then, solving the integral means to find such a preconceived quantity.

This existence model can be represented by the following scheme:

X- dX4 f dX -0 X
Within this context, if a "Fundamental Theorem of Calculus" is required in

the discourse, it would assume this form: 'if d.X = dY, then X-Y = C (a constant)."

Since in IC the variation quantity would be studied in order to find the primitive

quantity, in this sense the "Theorem" would merely mean that if two variable

quantities admit, with respect to a parameter, equal infinitesimal increments dr and

dy, such quantities must remain constantly equal to each other, or must always differ

by the same quantity; hence X - Y = C.
Such being the case, the topic of the discourse would be, precisely, the

differential of a preconceived quantity. In my opinion, then, it would become

natural to think of problems, both geometrical and mechanical, in terms of
infinitesimal variation.

If we were to calculate, for instance, a preconceived area in terms of its

variation with respect to a parameter, dA A(x). A(x) would be the area quantity

varying with respect to x. Once the area quantity has been found, the next problem

is to establish a general strategy to compute its numerical value with respect to

boundaries a and b of parameter x; dA -+ A(b) - A(a). By the "Fundamental

Theorem of Calculus," the area quantity must be expressed as A(x)+C where Cis

a constant. Thus, the strategy consists in setting a point of reference, let us say M,

which precedes the lower boundary of parameter x, a in this case (a < M). And

once thus assumed an initial area value in M, the area value from M to a will be

given by A(a) + C, and the area value from M to b, by A(b) + C. Finally, since

what we wish is to compute is the area value from a to b, this will be given by A(b) -

A(a). All the above wording can be reduced to the expression:

jr.,b dA = A(b) - A(a)

At this point, one is led to think of the relationship that might exist between

this concept of integration and that of quadrature.
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With this advantage of hindsight, to abandon the RA in the IC discourse

would seem, a priori, to part with the geometrical intuition, i.e., quadrature. It is

quite true that a natural attitude for the computation of non-quadrated regions is

to quadrate them. Now, to compute an area starting from its known differential, dA,

does not entirely lead us away from this natural attitude. In the first place, an area

differential, dA, inherits the nature of area A, and it is this dA we quadrate. Such

a dA is, so to speak, a small piece of A, as little as one wishes, in such a manner that

dA may be "considered" as the area of a small rectangle ydr, where y is its height

and dx its base.

Thus, both the limit of a sum, and "taking" a differential element require, in

a certain sense, the notion of quadrature.

Finally, I would like to stress the fact that, in our approach to the study of

the old IC didactic discourse [r, 3], the driving idea in the model of integration

theory is the taking of a differential element. As I said above, this idea preceded

the RA, and what is more, it prevailed, in didactic discourse, in the work on
integration by Cauchy [4]. Meanwhile, in the development of Mechanics this idea

prevails unrivalled, and is even used as a methodological element seeking to give a

better explanation of its fundamental laws. It can be said that the pattern which

accounts for the formulation of the Integration Theory is precisely, the taking of a

differential elements.

Some final considerations

The scheme that governs Integration Theory ix X - dX -S dX -- X.
Extrapolating, this is equivalent to the integration of derivatives, a concept which is

in agreement with the fundamental problem of the General Theory of Integration.

It is in this sense that a mathematical model can be built, whose definition of
integration can be f = F(b) - F(a), where F is a primitive function of f, equivalent

to Lebesgue's integration.

Thus, the scheme would possess the same conceptual domain as the limit of

a sum in the General Theory of Integration [5].

Summing up, I would like to use Foucault's words to emphasize the
relevance and orientation of this research in the didactics of mathematics: "...it will

not be a question of knowledge described in its progress towards an objectivity

wherein, at least, our present science can be recognized; what we shall try to bring

under the light will be the epistemological realm, the episteme where knowledge,

considered outside any criterion which refers to its rational value or its objective
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forms, sinks its positivity and thus show a history which Is not that of its growing

perfection, but that of its conditions of possibility" [6].

[1]

[2]
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COMPUTER ENVIRONMENTS IN
MATHEMATICS LEARNING



SOFTWARE DESIGN FOR LEARNING MATHEMATICS

Idit Harel
Media Laboratory

Massachusetts Institute of Technology

This paper describes a four-month-long experiment in computer-based
learning and mathematics education called Instructional Software Design
(ISD) and presents the project's strategies and philosophy, as well as some
aspects of the evaluation. The participant ISD class, comprised of
fourth-grade children at a Boston public school, learned about programming
and fractions while developing software in Logo Writer. The research was
quantitative and comparative as well as qualitative. Two control classes were
selected: one class had equivalent exposure to Logo, but no exposure to ISD;
the other used Logo only once a week in a "computer laboratory." All three
classes followed the regular mathematics curriculum, including a two-month
unit on fractions which coincided with the ISD project. Pre- and post-tests
were administered to the experimental and control groups; in addition, the
experimental class was carefully observed and interviewed throughout. The
case studies and the evaluation revealed greater mastery of Logo and fractions
by the experimental class than for either control class and greater acquisition
of metacognitive skills. In the course of discussion, the ISD approach of
using programming as a tool for reformulating mathematical knowledge about
fractions and Logo, is compared to other approaches to learning Logo,
notably teaching Logo per se in isolation from a content domain.

THE INSTRUCTIONAL SOFTWARE DESIGN PROJECT (ISD)

One of the main ideas behind this research is the creation of a constructivist

learning environment (Papert, 1980, 1986, 1988) that resembles a design studio

or a professional software company, and where the computers are used as a

medium for children's learning mathematics through building representations and

explaining their knowledge to others.

At Project Headlight, there is no long hall way leading into one classroom

called the "Computer Lab" where children are being walked into once or twice a

week for a 45-minute "Computer Literacy Class" or "Computer Programming

Class." Rather, there are two large open areas (the Pods) housing four large
circles of 100 computers, and each pod is surrounded by 6 classrooms with no

doors. At Headlight, children use computers at least one hour a day, for working

on their different computer projects, as an integral part of their regular homeroom

activities. One of these pods with its many computers, turned into a
software-design studio during the ISD project (Harel, 1988, 1989). This was the

environment for the seventeen fourth-grade children who were given the
opportunity to construct a personally designed piece of instructional software that

would explain something about fractions to some intended audience.

In ISD, fourth-grade children worked with great intensity and involvement,
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over a period of four months (close to 80 hours in total), on a subject that more

often elicits groans or yawns than excitement--namely fractions. What made

fractions so interesting to these children was that they could work with them in an

environment and a context that mobilized creativity, personal knowledge, and a

sense of doing something more important than just getting a correct answer. Each

child had complete freedom to choose a particular topic within the general area of

fractions, as well as the freedom to choose how to teach about it, what screens to

design, whether to use graphics or text or both, and so on. These students,
through the use of their computers, tackled complex mathematical problems and

representations, they worked on large-scale, meaningful projects, had great
reflective responsibility for their own learning, and were able to work in a variety

of styles whose differences reflect gender, ethnicity, or individual personality .

The ISD environment required the deep involvement of all the participants.

ISD included interactions and reciprocal relations among the children, teacher,

researcher, members of the MIT staff, and sometimes visitors--all of whom

worked at their personal computers, walked around the computer-area, talked

together, helped each other, expressed their feelings on various subjects and

issues, brainstormed together, or worked on different programming projects
individually and collaboratively. Knowledge of Logo programming, design, and

mathematics was communicated by those involved; and the children, much like

the adults in this area, could walk around and observe the various computer

screens created by their peers, or look and compare the different plans, designs,

and representations for fractions and algorithms in their Designer's Notebooks.

In this noisy, flexible, creative, and productive software design studio young

children were developing mathematical knowledge and ideas. They were learning

with no workbooks or worksheets, but with a different kind of a structure. They

became instructional software designers, and were representing knowledge,

building models, and teaching concepts on their computer screens. They were

thinking about their own thinking and other people's thinking--simultaneously--as

means for their own learning.

There are several reasons why the computer is an outstanding medium for

learning through instructional designing, as well as for investigating children's

processes of designing, producing, and representing. "Instructional software

designing and programming" meant the building of a system that has an
instructional purpose and the format of an interactive lesson. In this context, the

instructional systems were constructed by children, over a long period of time,

and were composed of many computer procedures or routines (i.e., isolated
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units) that were connected to each other for the purpose of teaching or explaining

fractions to other children. Furthermore, unlike most computer routines or
programs, instructional software is a collection of programs designed while

seriously considering the human interface. The instructional software must
facilitate the learning of something by someone--a real person.

Creating instructional software on the computer requires more than merely

programming it, more than merely presenting content in static pictures or written

words, more than managing technical matters. When composing lessons on the

computer, the designer combines knowledge of the computer, knowledge of

programming, knowledge of computer programs and routines, knowledge of the

content, knowledge of communication, human interface, and instructional design.

The communication between the software producers and their medium is
dynamic. It is a constant planning and replanning, representing, building and

rebuilding, blending, reflecting, reorganizing, evaluating and modifying.
Software designers must constantly work back and forth between the whole

lesson to its parts, between the overall piece and its sub-sections and individual

screens. Because of the computer's branching capabilities, the designer has to

consider multiple routes each user might take, and the non-linear relationship

between the lesson's parts can grow very complex. Moreover, while using the

computer, the producer needs to design interactions between the learner and the

computer: designing questions, anticipating users' responses, and providing
explanations and feedback. The child-producer who wants to design a lesson on

the computer must learn about the content, become a tutor, a lesson designer, a

pedagogical decision-maker, an evaluator, a graphic artist, and so on.

The psychology of instructional software designers is different from that of

learners in a regular classroom. Instructional software design is a complex,
active, and time-consuming enterprise. It requires that software designers invest a

large amount of time in learning to program, create, and implement their own

ideas and explanations about the subject matter involved. They do not "sit and

listen," but are personally involved in their learning/teaching enterprise, and take

pride in it. They are the ones who make it happen. Perkins (1986) says, tthat in

"knowledge as design" environment he problem's meaning is not given by the

problem itself; rather, the designer imposes his own meaning and defines his own

goals before and during the process. The goals and the sub-goals may change

over that period of time, and keeping track of these changes is a central interest

when the design task is not for the purpose of "getting it right," but is aimed at

learning and developing thinking skills. Schon (1987) also analyzes how different
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designers (e.g., architects) impose their own meaning on a given open-ended

problem, and how they overcome constraints (created by themselves, or given as

part of the problem they solve) and take advantage of unexpected outcomes. In

the process of learning, and when educational practices are at issue, many of the

research questions change. Even the rare existing literature on the processes of

software design or software engineering in no way attempts to investigate what

could designers learn through the process of software design, or how the
designer's content knowledge develops through the process of software design.

ISD FOR LEARNING LOGO PROGRAMMING

Many researchers over the last decade stated that young children find it

difficult to learn Logo in the first place, or to pursue a richer route into
programming and other metacognitive and meta-learning skills of various kinds

(i.e., other more general thinking skills such as planning, note-taking, explaining,

representing, or reflecting). Researchers in the field, basing themselves on these

limited findings and many other educational practice constraints have sought

"better" instructional techniques and more sophisticated teaching methods for

Logo programming per se, hoping that the development of "better Logo Courses"

would result in the learning of programming and its transfer (e.g., Carver, 1986;

Perkins et al. 1985, 1987; or articles in Pea and Sheingold, Eds., 1987).

However, some of the reasons for many of the pessimistic findings in the

research on children's learning and understanding of Logo programming, or on

children's programming and their cognitive development, were partially and

possibly related to several limitations in the studies themselves, and not
necessarily to the children's cognition, learning, and problem-solving abilities

with Logo. Piaget, for example (whose cognitive theories strongly influenced the

creation of Logo and its educational philosophy) argues that a child's knowledge

of something results from his own progressive constructions in wide and
meaningful contexts, and that each time one prematurely teaches a child
something which he could have discovered and constructed for himself, the child

is prevented from inventing it and therefore from understanding it completely.

With this quite radical and rather "Logoish" perspective in mind, we suggest that

one limitation of the previous studies might be the fact that the children did not

program intensively or extensively, and were not given the chance to explore and

experience Logo in a wide variety of contexts over long periods of time. Other

related limitations of previous studies might be their involvement with
programming for the sake of programming, their not providing children with

meaningful contexts and tasks for programming, and their failure to integrate the
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programming process into the learning of other subjects.

When we describe Debbie, for example (see Harel, 1988, 1989), we
emphsized that the important thing was what she was programming. The
justification for taking the trouble to learn to program would not be only the
cognitive gains of learning to program, nor anything as believing that she would

need to know Logo when she grows up, but what she could do with this skill in

the here and now. But in fact there is no need to justify taking the trouble to learn

to program, for learning programming was the same activity as using the program

to express herself about such matters as fractions.

Programming in the ISD context also meant that children were able to take

control over the computer, and to use it as a very personal medium for learning

other content knowledge. It is the most powerful and general way to use a
computer. That is why languages like Logo (Papert, 1980) and Boxer (diSessa,

1989) will continue to be important in education; because they give students a

great control of computers, putting that resource at their disposal in service of

student-oriented projects and meaningful activities, because powerful applications

like HyperCard, many word processors, and more advanced databases have

programming options just below the surface, programming concepts are
increasingly indistinguishable from these tools (Papert, 1988).

ISD FOR LEARNING ABOUT RATIONAL NUMBERS

AND THEIR REPRESENTATIONS

Unlike whole numbers, which children largely come to grasp informally and

intuitively out of school, learning the rational-number system is confined almost

ecxlusively to school. Fractions figure prominently in the curriculum each year

from the second grade on. Even so, several national assessments of children's

mathematical achievements have found that children's performance on
fraction-ordering and computation, for example, was low and accompanied by

little understanding (Tierney, 1987; Post et al., 1985).

Fractions are ideal tools for learning about number systems and
representational systems in mathematics. The understanding of the
rational-number representational system is a privileged piece of knowledge among

the other pieces of rational-number knowledge. Representations form part of the

deep structure of rational-number knowledge, wheras algorithms are the surface

structure (e.g., Janvier, 1987). One of the goals of ISD was to involve children in

exploring and learning the system of representations of fractions intensively and

then assess their knowledge of basic rational-number concepts and algorithms.

There is a diversity of knowledge about rational numbers, including 1) the
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subconstructs (e.g., ratio, part-whole, operators, fractions, decimals, or
percentages), and 2) the representations for each subconstruct and for the whole

rational-number system (e.g., words, mathematical symbols, pictures, or real-life

situations). When the child "visits" a particular rational-number subconstruct, he

or she will be sensitive to the properties and characteristics of that subconstruct.

Several of these subconstructs will be more or less intuitively accessible, and

some children might be more familiar with, and think more easily "in the style of

one subconstruct (e.g., fractions), while at the same time they may be less
familiar or feel uncomfortable thinking in the style of another (e.g., decimals). In

general, the relations between subconstructs are poorly organized and unevenly

formalized (e.g., Behr et al.1983). The whole rational-number system and its

subconstructs derive some meaning from each other, and multiple representations

are not just alternative means of understanding, but are viewed here as the deep

structure of rational-number knowledge. Therefore, it is important to help
children move easily from one subconstruct to another, to connect and
differentiate between each subconstruct's characteristics and properties, and to

express the same ideas using several representations such as sections of circles or

rectangles, words, money, food, or time.

A major focus in previous assessments of children's development of
rational-number concepts has been the role of manipulative aids including Pattern

Blocks, Fraction Bars, Cuisenaire Rods, Number-Lines. The materials were used

to facilitate the acquisition of rational-number concepts and representations, as the

child's understanding moved from the concrete to the abstract. However, the

psychological analysis done by Lesh et al. (1983), for example, showed that

manipulatives were just one form of presentation in the large representational

system, and that the other modes of representation (the symbolic, written, or

real-life situations) also played a very important and variable role for different

thinking styles, and in children's acquisition and use of these concepts. Different

materials and activities were found to be useful for making models of different

situations, and no single manipulative aid was found to be the "best" for all

children, for all rational-number situations, or for translating fractional
representations (Behr et al., 1983).

Using Logo to create and combine mathematical representations
Consistent with Lesh's psychlogical analysis of representations, the ISD

project did not focus on children's working with one subconstruct or any most

powerful representation (e.g., as in the Number-Lines or Pattern-Blocks
curricula). Instead, ISD provided children with an environment in which they
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could work and explore relations between several representational modes (e.g.,

pictures and symbols), combining the different rational-number subconstructs

(e.g., connecting 50% and 1/2), and translating between several representational

modes (e.g., designing a screen that combined both graphical and written
representations for the fraction 1/2, and the decimal 0.5).

For example, in Logo a child can program a simple picture of a circle region

divided into fourths and, using different flashing colors, shade in two of these

fourths and have them blink on and off in order to show a representation of

two-fourths. The child can add the written words "two-fourths," which is
translating pictures into written words. She can add another picture--a large round

clock with an animation of the clock's big hand moving slowly from the number

12 to the number 3--and write, "this is one-fourth of an hour," then move the

hand from number 3 to the number 6 and write, "this is another fourth of an

hour"; or write on the screen, "one-fourth of an hour is 15 minutes, two-fourths

are 30 minutes" (this is a translation of the pictorial representation of time or

clocks into words, but it is also a representation of a real-life situation and its

translation into fractions).

Another example, taken as these all are from the children's actual projects, is

to program a picture showing a one-dollar bill with four quarters underneath.

Two of these quarters be highlighted in different colors, and be animated to

"walk" around the screen and "sit" beside the written words "two-fourths of one

dollar." Another approach would be to compose a musical tune, then play a half

of it, a fourth of it and so on. We can imagine a variety of representations, frbm

pizzas to gears, from musical rhythms to body movements. As some of the
children put it, "Fractions are everywhere." "Fractions can be put on anything!"

The ISD children used Logo to make their own representations of
rational-number concepts for teaching. In so doing, they were trying to make the

representations that would serve as good pedagogical aids for other children. By

becoming designers of instructional software, the children gained distance and

perspective in two senses. In the first place, they were dealing not with the
representations themselves, but with a Logo representation of the representations.

Moving between representations was subordinated to programming good
examples of representations. Secondly, the children programmed, not for
themselves, but for others. They had to step outside and think about the other

children's reactions. This distance and perspective provided children with control

of the process of learning and moving between representations, contrasts with

being put through the paces of an externally-conceived sequence of learning.
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In summary, ISD recast fractions learning in essentially two ways: 1) it
emphasized more involvement with the deep structure (representations) over the

surface structure (algorithms) of rational-number knowledge; and 2) it made
fractions learning instrumental to a larger intellectual and social goal, that is,
having children explain what they think and learn in an interactive lesson for
younger children.

Learning more can be easier than learning less
There are certain drawbacks to implementing instructional software design

activity in a school's curriculum. Software design is a time-consuming and quite

a complex enterprise for a teacher to handle, and it is not yet clear how it can fit

into the average class schedule. Also, it might cause problems in children's
learning of other subjects in the school, and, at the present time, it is not very

clear which school subjects would lend themselves best to this complex process

of learning. However, the goal in the ISD Project was to experiment with one

topic (fractions), and make it possible for children to learn through designing and

programming instructional software much as they would do in a professional

environment. The learning processes of instructional software design offered
major changes in the conditions for learning:

Knowledge about computation [such as programming] and the sciences of information [such as
control over one's own processing, metacognition, and constructing of information] have a
special role in changing education. Such knowledge is important in its own right. It is doubly
important because it has a reflexive quality--it facilitates other knowledge...The reflexive quality
of information science offers a solution to the apparent impossibility of adding another
component to an already full school day. If some knowledge facilitates other
knowledge, then, in a beautifully paradoxical way, more can mean less... The idea that
learning more science and math means necessarily learning less of something else shows a
wrong conception of the integration of these subjects into knowledge and cultures. They should
be supportive of the other learning. It should be possible to integrate at the same time,
blocks, learning of science, mathematical concepts, art, writing, and other subjects. If two
pieces of knowledge are mutually supportive it might be easier to learn both
[at the same time] than to learn either alone [Papert's emphases, Constructionism: A New
Opportunity for Elementary Science Education, 1986, p. 2).

In ISD this meant that Logo and rational-number concepts were mutually

supportive of each other and contributed to each other while the child was in the

process of learning them. More over, young children learned fractions Logo

programming, instructional designing, planning, story-boarding, reflection,
self-management, etc.--all at the same time and in a synergistic fashion. ISD

integrated these different kinds of knowledge and disciplines.

Learning by teaching and representing
It has been observed that the best way to learn a subject is to teach it. Many of
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our learning experiencs as learners, teachers, and researchers, revealed to us at

least one principle: that we learn most effectively from teaching or explaining

something to another person. Building models and representing and explaining

knowledge is essential to all forms of knowing and understanding. For example,

teachers have occasionally told us that they had "finally understood something

today for the first time" when a student asked for an explanation of something he

did not understand. Some of our friends (professional computer programmers) at

MIT have told us that they "really" learned how to program when they had to

teach it to someone else--or when they were involved in a real, complex, long,

and meaningful programming job. Many university professors choose to teach a

course on the theory or topic of their research while they are actually working on

it; through their processes of teaching and discussing their work with their
students, they also identify and revise their own ideas and theories.

Fourth-grade children seldom have the same opportunity. Peer teaching can

be used to take a small step in that direction. ISD took a much larger step. It

provided children with similar conditions for learning as those of the MIT
computer programmers, university professors, or professional software
designers. These people gain expertise and learn concepts and skills by actually

experiencing and exercising them in long-term, personal, professional,
meaningful, and complex contexts; they acquire a deeper understanding of their

knowledge and of their professions by communicating their knowledge to less

experienced people; they learn about their own theories by teaching them; they

learn about production by producing; and they learn about a topic by designing a

videodisc or a piece of software for it. Finally, the following section from
Debbie's Case (Harel, 1988, 1989) illustrates this principal:

Consider Debbie, a black student with low mathematical scores in general, and according to the
pre-test given to the experimental and two control groups (Harel, 1988). After a whole month of
explaining about fractions by using different geometrical shapes divided into halves and fourths,
Debbie chose to teach about an idea of a different, more "philosophical," nature than how to cut
a shape into thirds or how to add a third and a half. She chose to explain that "there are fractions
everywhere...you can put fractions on anything." For teaching about this idea, Debbie designed a
representation of a house, a sun, and two "wooden wagons." A few weeks later, Tommy's House
appeared, and then Paul's. The idea that it is important to teach others that "fractions are
everywhere," and that one could "find fractions in regular human things" was spreading around
the "Design Studio." Michaela and Sharifa used Debbie's software and received her full set of
explanations about it. However, they chose to teach it in another way. Sharifa selected to
represent fractions by using a clock, teaching her users that "Half an hour is a half of ONE
hour...and this is a fraction too." And Michaela chose to teach through using a representation of
"two measuring cups filled with different quantities of orenge juice, water, or flour--depends on
the fraction..." Debbie's, Michaela's, and Sharifa's struggles to make sense of a fraction as an
idea, or as a thing, were carefully traced. It took them a whole month to "separate" from the
school's or the teacher's knowledge and to start relating to fractions in a more personal way. But
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what is more relevant here is, for example, that Debbie's ability to manage fractions--including
standard classroom manipulations--improved during this Project. Why?
At this stage we can come up with several related explanations. Perhaps the explanation is
entierly affective: Through thinking about teaching and explaining fractions to other children,
Debbie (like Sharifa or Michaela) developed a new relatioship with fractions, felt at ease with
them, and so could bring herself to think about them even when given a more formal type of a
problem to solve. Or perhaps, she had become more fluent in her ability to find representations
of fractions, which enabled her to think about them in many, much more "tricky" situations.
But whatever the explanation is, it is quite clear that Debbie's ability to work with fractions
improved considerably--from a project that was entirely self-directed, and gave her no "feedback"
in the form of marking responses right or wrong. In fact, this project was quite different from
the kind of class work that had failed to elicit from Debbie quality thinking about fractions.
Debbie is not the only one. Before ISD had began, a battery od standardized tests in the area of
fractions and a lengthy interview were conducted with all the students in her class and in two
other control groups. Consistent and higher improvements were found among the experimental
class on tests of fractions manipulations and algorithms--even though the experimental students
had not received any more instruction on fractional manipulations and standard algorithms than
the two control groups.

Debbie's experiences and their results (see Apendix) are strong examples for

what we mean by constructionism, learning by teaching, and learning by
representing. It allows us to contrast what Papert describes as "constructionist"

and "instructionist" uses of the computer (Papert, 1986, 1989). The computer did

not in any sense deliver instruction to Debbie; it did not teach her anything.

Instead, it created a context in which she could learn about fractions through a

lengthy process of engaged work. The fact that she was making something that

she cared about gave purpose to her activity and focused her engagement.

ACKNOWLEDGEMENTS
The research reported here was conducted at Project Headlight's Model School of the Future

in collaboration with the teacher Linda Moriarty, as part of my Ph.D. Thesis at the MIT's Media
Laboratory. Much thanks to the students and teachers of Project Headlight at the Hennigan
Elementary School, without whom this project would not have been possible. The research was
supported by the IBM Corporation (Grant # OSP95952, the National Science Foundation
(Grant # 851031-0195), the McArthur Foundation (Grant #'87z,1304), the LEGO Systems A/S,
and the Apple Computer Inc. The preparation of this paper was supported by the National
Science Foundation (Grant # MDR 8751190). The ideas expressed here do not necessarily reflect
the positions of the supporting agencies. I am deeply grateful to Seymour Papert for his ideas
and contribution to my research and this paper; to David Perkins and Sheldon White for their
insightful comments on my research; and to Richard Lesh and Roy Pea for their comments on
previous drafts of this paper.

REFERENCES
Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational Number

Concepts. In Lesh, R., & Landau, M. (Eds.), Acquisition of Mathematics
Concepts and Processes. New York: Academic Press.

Carver, S. M. (1986, December). Transfer of LOGO Debugging Skill: Analysis,
Instruction, and Assessment. Ph.D. Thesis. Pittsburgh, PA: Carnegie-Mellon
University.

DiSessa, A. (1989). Boxer: Research, Development, and Projects. Presentation
given at the Annual Meeting of the American Educational Research Association.
San Francisco CA.

78



Harel, I. (1986, July). Children As Software Designers: An Exploratory Study in
Project Headlight. Paper presented at the LOGO 86 International Conference,
Cambridge, MA: MIT.

Hard, I. (1988, June). Software Design For Learning: Children's Construction of
Meaning for Fractions and Logo Programming. Ph.D Dissertation. Cambridge,
MA: Media Laboratory, Massachusetts Institute of Technology.

Harel, I. (1989). Debbie Is In Charge of Her Own Learning: A Case Study of a
Young Software Designer. Cambridge, MA: Media Laboratory, MIT.

Harel, I. (1989, in progress). Patterns in Instructional Software Design: Case
Studies of Young Children. Cambridge, MA: Media Laboratory, Massachusetts
Institute of Technology.

Harel, I., and Stein, C. (1989). Children As Software Designers: A Video Series.
Cambridge MA: Media Laboratory, MIT.

Janvier, C. (Ed.) (1987). Problems in Representation in the Teaching and
Learning of Mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kurland, D. M., & Pea, R. D. (1983). Children's Mental Models of Recursive
Logo Programs. In Proceedings of the Fifth Anual Cognitive Science Society.
Rochester, NY: Cognitive Science Society.

Lesh, R.,& Landau, M. (1983). Acquisition of Mathematics Concepts and
Processes. Academic Press.

Papert, S. (1988). The MIT Center for Educational Technology. A Proposal for
the Department of Education. Cambridge MA: Media Laboratory MIT.

Papert, S. (1987). Using Computers to. Combat Illiteracy: Towards a
Constructionist Theory of Creative Learning. A Proposal to the MacArthur
Foundation. Cambridge, MA: Media Lab MIT

Papert, S. (1986). Constructionism: A New Opportunity For Elementary Science
Education. A Proposal to the National Science Foundation. Cambridge, MA:
Media Laboratory, MIT.

Papert, S. (1985, July). Computer Criticism vs Technoratic Thinking. Cambridge,
MA: the Media Technology Laboratory, MIT. Also appeared in LOGO 85
Theoretical Papers. 53-67.

Papert, S. (1980).Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic.

Pea, R. D., and Sheingold, K. (Eds.) (1987). Mirrors of Mind: Patterns of
Experience in Educational Computing. Norwood, NJ:Ablex Publishing
Corporation.

Perkins, D. N. (1986). Knowledge As Design. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Perkins, D. N. (1985). The Fingertip Effect: How Information-Processing
Technology Changes Thinking. Educational Researcher, 14(7). 11-17.

Perkins, D. N. & Martin, F. (1985, October). Fragile Knowledge and Neglected
Strategies in Novice Programmers. Technical Report no. 85-22. Cambridge MA:
Educational Technology Center, Harvard Graduate School of Education.

Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J. (1985). Order and
Equivalence of Rational Numbers: A Cognitive Analysis. Journal on Research in
Mathematics Education, 16(1). 18-36.

Schon, D. A.(1987). Educating The Reflective Practitioner. San Francisco:
Jossey-Bass Publishers.

Tierney, C. C. (1988). Construction of Fraction Knowledge: Two Case Studies.
Unpublished Doctoral Thesis. Cambridge, MA: Harvard Graduate School of
Education.

79

-88



PROPORTIONAL REASONING STRATEGIES: RESULTS OF A TEACHING

EXPERIMENT USING CONCRETE REPRESENTATIONS

Mary Maxwell West, Clifton Luke, Joel Poholsky, Laurie Pattison-Gordon, Shelagh Turner, and

James J. Kaput

Educational Technology Center, Harvard Graduate School of Education

We contrast traditional approaches to the teaching of
proportional reasoning based on the writing of algebraic
equations with those based on a more concrete representation
using computer graphics. Setting up an equation seems not
to require a solid conceptualization of the situation being
modeled and typically employs a syntactic solution process
that is used as a black box. The latter engages a richer
conceptualization and simultaneously provides a semantically
transparent means for the solution process.

The multiplicative structures curriculum in the middle grades, covering multiplication,

division, rates, ratios, and proportional reasoning, is widely seen as the locus of serious curricular

and student difficulty. We report on of data gathered in intensive teaching experiments involving

seven 6th grade classes: four experimental spanning three ability levels and three control, two at the

middle ability level and one at the high ability level. We concentrate on two experimental-control

pairs of classes taught by each of two highly experienced teachers at the middle ability level, and the

second of three interventions involving these classes, slightly more than two weeks in duration. The

school serves an upper-middle class suburb, with approximately 10% minority students bused from

the inner city. Our population is younger by one to three years than those usually studied, and our

curriculum was conceptually more challenging than the standard 6th grade curriculum.

These data trace the stability of erroneous additive strategies in the solution of proportion

problems, and the differences in proportional reasoning that follow from differences in instruction,

where control classes used the usual equation notation for proportions and the experimental computer

based instruction used a variety of more concrete notations. This paper follows Kaput, et al. (1988),

which reported in detail on one student's shift from consistently additive thinking to a multiplicative

strategy in the context of a particular concrete model of the discrete ratios involved. While that

earlier report also indicated that such shifts took place among other students who had been studied,
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this report provides more quantitative data on its occurrence. The experimental classes used specially

designed software and materials comprising a "concrete-to-abstract software ramp" whose

development and theoretical rationale have been reported on in recent PME meetings, e.g., see

(Kaput, et al., 1987, 1988).

Whole-class written pre- and post-tests were given before and after each intervention as well as

a general test prior to and following the entire teaching experiment. Several students from each class

(both experimentals and controls) were tracked closely throughout all interventions. They were

interviewed on selected tasks during the week following each written test and those in the

experimental classes were observed closely, especially during computer laboratory sessions, which

comprised about half the class time. Performance on the interviews closely paralleled that on the

written test.

The topic coverage in the four classes varied as follows:

In the two experimental classes, 54 modeling problems, 14 "translation" mini-problems and no

pure computation problems. In one control class, 19 modeling problems, 126 "translation"

mini-problems and 191 pure computation problems. In the other control class, 5 modeling

problems, 23 "translation" mini-problems and 68 pure computation problems.

The control classes concentrated on using equations to model proportions, including

cross-multiplication. The first control class used Function Machines, another computer environment

(based on a visually oriented programming language) (Richards & Feurzeig, 1989), to construct

linear functions to model proportional relationships in most of the 19 modeling problems. The

modeling problems in the control classes were almost all multiplicative in nature, whereas the

experimental classes dealt with some genuinely additive situations for contrast purposes in a conflict

teaching episode, two of which involved geometric similarity (creating two sizes of socks).

DESCRIPTIVE DATA ON GROUP PERFORMANCE

Given such variation in topic coverage, "horserace" comparisons are not as informative as more

Pre-test Post-test

Exp Contr EXP Contr

75-110%

50-74%

25-49%

0-2411

0 0 7 2

o 0 9 6

1 2 7 1

31 32 9 22

Correct Solutions (number of students)

Figure 1

detailed examination of student performance and the thinking behind it. Figure 1 reveals
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substantial comparative post-test gains, in terms of numbers of students improving percentage of

correct responses, for the two experimental over the two control classes at the middle ability level. It

also reveals that the material was new to all students.

Of more interest is how these mid-level experimental and control classes differed in the quality

of their strategies. We classified as additive those approaches based on additive or subtractive

comparisons between quantities as described in the literature, e.g., (Toumiere & Pulos, 1985).

Multiplicative approaches included the unit factor strategy, the usual algebraic equation strategy, and

the "boxes" strategy (described below). Computational accuracy did not affect the classification.

Multiplicative approaches received higher point value than the additive one, and an intermediate value

was assigned for "build-up" strategies, which are an immature version of multiplicative strategies.

Based on the sum of points for each proportional reasoning problem, each student's set of responses

was classified as primarily additive, multiplicative, or mixed. The pre-post comparison for the

experimental classes appears in Figure 2, indicating an strong move from additive to multiplicative

approaches. Note that these additive-to-multiplicative changes are similar to those reported by Hart

(1984, 1988), although not quite as complete probably due to the younger age of our students.

Mull 0 0 0

1 Block gain: 32%Pre-
Test

Mix 1 5 9 2 Block gain: 32%

5 3 Significant gain total: 64%

M Mix Mule

Post-Test

Figure 2

About 35% of the students in the two control classes showed ga:ns, with most of these (75%)

occurring, interestingly, in the Function Machines, class.

CONTRASTING EQUATIONS WITH MORE CONCRETE APPROACHES

More detailed data relate the different patterns of responses to the different types of tasks. We

hypothesized that traditional instruction based on writing an equation for the proportion would yield

correct surface performance on routine missing value proportion problems (e.g., through solving

equation representions of proportions), but would leave underlying conceptions relatively unchanged,

as reflected in the return to primitive strategies in more difficult problems, non-routine problems, and

especially problems that involve both additive and multiplicative structure in combination or are

otherwise not amenable to formulaic approaches. The data confirm these hypotheses in two ways,

first in the tendency of control students to revert to additive approaches in more difficult problems

and, second, in the tendency to apply the equation writing strategy inappropriately on variants of

missing values problems.

We now review the two approaches to solving missing-value proportion problems with
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respect, first, to setting up the representation and, second, to employing the representation to solve

the problem. We shall identify differences in the relationship between the conceptualization of the

situation being modeled and the different conceptualizations of the two model themselves.

THE EQUATION WRITING APPROACH

The standard solution strategy is to set up an algebraic equality of two ratios in fraction form:

A/13 = C/I), a comparison of multiplicative comparisons. One ratio is provided or to be inferred

directly from given information, while the other is incomplete, indicated by the use of a symbol for

an "unknown" in one of the four places in the equation. Consider the following "toys" problem.

A toy store sells 5 matchbox cars for every 8 stuffed animals. How many staffed animals are

sold if the store sells 40 matchbox cars?

To set up an algebraic equation, the student must first identify two ratios to be compared. As

is well known (Karplus, et al., 1983; Vergnaud, 1983), there are two types of (within ratio)

comparisons possible. On one hand there is the "within measure" or "scalar" comparison, where

one compares like quantities, in this case, cars to cars and animals to animals. Each of these can be

written as ratios in two ways, as 5 cars/40 cars and 8 animals to X animals, or their inverts. On the

other hand, one can compare "across measures" or in a "functional" comparison, where one compares

cars to animals or animals to cars. Written as ratios, these look like 5 cars/8 animals and 40 cars/X

animals or, respectively, their inverts.

In this case, the identification is relatively explicit in the problem statement - we are

comparing numbers of matchbox cars sold with the number of stuffed animals sold. (In other

problems, especially in geometric similarity problems, choosing an order for the comparison does

not at all follow so easily from the problem statement.) Meticulous teaching of this strategy usually

calls for the student to include units for the numbers, so the ratio is to be expressed as an intensive

quantity: 5 cars/8 animals. The purpose of the units is to make mor' explicit the direction of the

(withinratio) comparison, and, indeed, the fact that a comparison is actually being made.

We are now ready for the second level of the comparison, the comparison between ratios to be

embodied in the equal sign. One must now write the second ratio, which reduces to determining the

position of the unknown in the fraction. It is here where the units already written can play their role,

by helping the student determine the directionality of the comparison - which is assumed to be the

same across both sides of the equation. Again, meticulous teaching makes this point explicitly. In

the toys problem, we are comparing cars to animals and are told that the number of cars is 40

(although the word order in this part of the problem statement is revered), so we write the "40 cars"

in the numerator of the fraction matching the left side, and write "X animals" in the denominator,

where the units likewise match the left side denominator.

At this point, having written the equation representation, the usual syntactically based

transformations of this representation comprising the solution process (cross multiply and divide)

constitute a black box cognitively independent of the conceptualizations that led to the initial
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equation. In particular, students have little understanding of the referential content of the intermediate

steps, of what 5*X = 8*40 might stand for, even if the units ("car-animals") are included. However,

if one uses more semantically guided transformations based on maintaining equality between

equivalent ratios as one adjusts one or the other side, then the process amounts to an elaboration of

those conceptualizations. Controls were taught the syntactic method.

THE BOXES APPROACH

The approach described here is based on a conceptualization of the given quantities and relations

among them as groups or clusters of 5 cars and 8 animals paired in some way. This appears to be a

more natural conception for discrete quantities in that it appears spontaneously among students for

whom it has not been taught, and it appears to coexist with an equations approach after the latter has

been taught. This contrasts with the equations approach, which appeared only when taught in our

data as well as that of Hart (1988). We chose to capitalize on students' tendency to think of a

proportion situation in the paired-groups style by providing a notation system that is consistent with

it and exploits its transparency as the basis for reasoning with it - see Figure 3.
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int 3d

tat tat V fat

alt tit It *i
74 tat V !of
e ft. A Po SR
0 tat td' *I
ut tat td 14

. ...... . .............. ...

0. oily. ..... tow.
no, ...... ler 01.

. . .

3
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!tar Chilt
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14 14 34 3d
Mt fat tor 34
114 il4 if i4
14 14 ti 14

11 11 1 11
...

34 14 14 tt tr
34 14 /14 tf tir
i4 i4 Id lir if
31 *4 14 1( if

11 11 4 11

Figure 3

Experimental students were provided a computer environment that enabled them to solve

problems such as the toys problem by dragging sets of 5 cars and 8 animals into individual cells as

indicated until the specified number of cars (40 in this case) has been matched with an appropriate

number of animals. By counting corresponding animals (often by multiples of 8), the student is

then able to answer the question. This strategy is can be done in both scalar and functional styles,

e.g., by dragging cars and animals either separately or together, respectively. Another part of the

computer environment supports incrementing the values of the car and animal quantities simply by

clicking on a MORE button, with the results shown not only in the rectangular array, but in a table

of data, and, if needed, in a cars-by-animals coordinate graph.

This incrementing approach can then be abbreviated and made more efficient by moving from

84

9 3



actions on sets of visual icons representing the quantities in the situation to actions on more formal

representations of the quantities. In particular, we ask
How many "boxes" of cars and animals are needed if there are 40 cars?
The question is answered with a quotitive division:
40 cars/(5 cars/box) = 8 boxes.
The next question is:
How many animals are needed for 8 boxes?
The answer is given by a product:
(8 boxes)(8 animals/box) = 64 animals.

Almost every student understood this strategy and employed it reliably on missing values

problems involving discrete quantities. Its learnability and its spontaneous appearance are only one

advantage over the more formal algebraic equations strategy. We closely examined four students

who relied on the equation strategy, two each from each of the two mid-level ability control classes

who were among the sample of students interviewed.

A critical difference between strategies is the relation between the initial conceptualization of the

situation being modeled and the ensuing solution process. It is possible to set up an equation using

a relatively impoverished conceptualization. One needs merely to distinguish the two quantities from

one another and use the units in a mnemonic manner to mark the relative positions of those

quantities in order that the comparison be consistent across the equality sign. One can then employ

the black-box solution process in a mechanical way without further engagement with the

conceptualization that yields the equation. Such an opaque process, of course, is frought with the

danger of unrecognized error or inadequately interpreted computational results.

On the other hand, the boxes strategy builds directly on a quantitative conceptualization of the

situation being modeled throughout, from initial set-up to final answer. A consistent difference has

been observed in the interviews in previous teaching experiments when students have been asked why

they believe in their answer. The equations-based solvers tend to say tither that they don't know or

"it came out that way," whereas boxes-based solvers tend to say, at worst, "because I worked it out."

At best, they give clear explications in terms of the quantities involved. They tend to identify the

justification with the method, because its rationale is transparent to them.

Another difference between the strategies appears in the brittleness of the equations strategy in

the face of variants of missing values problems, such as totals problems: In the senior class, there

are 3 girls for every 5 boys. If there are 240 students, how many boys and girls are there? Or

problems built on part-whole rather than part-part descriptions: Three out of every 5 students are

wearing sneakers. If 105 students are wearing sneakers, how many are not wearing sneakers? (In

each of these, students treated them as part-part comparisons.) Or problems involving multiple

proportions: In a bowl of candy there are 3 M&M's for every 4 jelly beans and 5 gumballs. If there

are 60 jelly beans, how many M&M's and gumballs are there? (Here they reverted to additive

strategies.)

For such problems, students who depended on the equations strategy tended to mis-apply it here,
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whereas the boxes-strategy students did so less frequently. In fact, equation solvers also tended to

mis-apply the method on true additive problems. Furthermore, among four consistent equations

users (who were almost 100% correct on straightforward missing value problems, the only correct

solutions used a boxes style approach.

CONCLUSION

The formally-based equations approach to solving multiplicative structures modeling problems,

while computationally efficient and general, suffers from the shortcomings of all conceptually opaque

procedures. In particular, its success is especially deceptive to teachers because it is easy to learn and

apply in a superficial way on a semantically narrow, but computationally general, set of proportional

reasoning problems. Embedding the approach in strategies which distinguish variants of

proportional reasoning problems, and using a more transparent equation solving process based on

equivalent ratios, are likely to improve the quality of the learning outcomes.
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THE COMPUTER AS AN AID TO FORMALIZING ARITHMETIC
GENERALIZATIONS

by

Donald M. Peck
University of Utah

Fifth-grade children, working on MacIntosh SE
computers utilizing HyperCard, made progress
toward abstracting and formalizing generalizations
of arithmetic into algebraic statements. The
students formed arithmetic generalizations from
experiences solving problems with physical
materials; via HyperCard's scripting language,
Hyper Talk, the students communicated their
generalizations to the computer in algebraic form.
The experience aided the students to develop
concepts basic to variable, equivalence of
equations, equation evaluation, and equation
solving.

A large part of the difficulty children have with mathematics is due to a lack

of understanding of the relationship of variables to mathematical concepts

(Rothman, 1988). The creation of "text fields" and "containers" for "holding"

numbers in Hyper Talk addresses this problem. The twenty-week project
described below was aimed at determining if the computer, given a sufficiently

easy language, could be used as a means of making the variable-mathematical

relationship clear to elementary school students. The project did encourage the

connection of variable to mathematical concept and also helped with the
interpretation and analysis of mathematical expressions, but seemed to have a

neutral impact upon computational efficiency.

The discussion of the project will proceed with a background description

of the children involved, a description of their introduction to the computer,

the instructional parameters, observations, and concluding comments.

STUDENT BACKGROUND
The children involved in the project attended a private parochial school

which draws it's students from the urban and suburban environs of Salt Lake

City, Utah. The students represented middle to upper-middle class social

elements with a smattering of minority and ethnic subgroups. The
mathematics capabilities of the students as measured by Education Review
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Board(ERB) examinations ranged from the 28th to the 99th percentile with an

average class position at the 75th percentile in mathematical concepts. The

ERB placed the children's computational abilities on the average at the 63rd

percentile with a range from the 11th to the 99th percentile.

The children were instructed in arithmetic at their school, then transported

to the University of Utah for an hourly Macintosh experience once a week.

INTRODUCTION TO THE COMPUTER
The student's first two experiences with HyperCard centered on the

process of accessing and creating "card stacks" and exploring the "tool
pallette". The third and fourth hourly sessions were devoted to creating and

copying "fields", "buttons", setting the font and style parameters for field
input, and "scripting" (programming) buttons. By the fifth session, the
children began to "script" buttons to compute surface areas and volumes for

some rectangular configurations and progressed from there to other
generalizations derived from their experiences with physical models.

THE INSTRUCTIONAL SEQUENCE
The instructional program consisted of a concrete phase, a representational

phase and a mental imagery phase followed by an experience in scripting the

computer to accomplish specific cases of the children's generalizations
(Figure 1).

Symbols defined
via actions on
concrete objects.

Sketches used to present
practice situations and
more problems.

Children encouraged to form
arithmetic generalizations.

Problems posed
about the physical
materials

Building mental pictures
by imagining actions on
physical materials.

Figure 1.

Express generalizations in
algebraic form via computer.

Instruction began by asking the students to imagine a unit cube as a rubber

stamp and the back of the instructor's hand as a stamp pad. The students were

asked to decide how many stamps with the unit cube would be necessary to

completely cover "5-rods" arranged in offset sequences as shown in figure 2.
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The students worked on the sequences until they found a way to determine

the number of stamps (surface area) required for any number of rods. Below

are two "children's" solutions for the sequence in figure 2:

I. The first rod requires 22 "stamps". Each additional rod adds 14
stamps. When the rods are "glued" together eight stamps are lost, four for
each rod. The total number of stamps needed for 20 rods is twenty-two, plus
fourteen times nineteen. The number of stamps for any size stack is 22, plus
fourteen times the total number of rods less one.

II. The first rod (rod 1) and the last rod (rod n) have eighteen
stamps each. Each rod inserted in between has fourteen stamps. So the
number of stamps in a 20-rod stack is two times eighteen, plus eighteen times
fourteen. The total number of stamps for any size stack of rods is thirty six
plus fourteen times the number of rods less two.

_MOW 2

Figure 2.

The children instructed the computer to handle specific cases of
generalizations they had formed by setting up two "text fields" in HyperCard.

They named one field "R" in which they entered the total number of rods.

The second field they named "S" to which the computer would "return" the

number of stamps required to cover a given stack of rods. The children

created two buttons, one to "compute" and the other to "erase". The "erase"

button was "scripted" to clear the fields between calculations while the

"compute" button was scripted to calculate the number of stamps required for

any given number of rods. Below is an example of a student effort for the

sequence in figure 2:

n®
3_MEM'

_ 11111111M2

22 + (
R

(Compute

- lr 14 =
S

( Erase
The "compute button" was scripted as follows:

on mouseUp
put card field "R" into r
put 22 + (r-1)*14 into card field "S"

end mouseUp
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( Clear )

EQUATION SOLVING

The children were introduced to simple equation solving by extending their

experiences with arithmetic into "missing number' statements from which the

children generalized methods of solution (Peck, 1988). Figure 3 illustrates

the kinds of examples used.

a. 4 x 5+ = b.11 =25
7 += El 0 x 5 = 21

23 x 0 = 7 75 = 9 x 0
Figure 3.

The children initially solved problems like those in figure 3 by using a
pegboard model (Jencks, 1985). When the students were comfortable with

solving equations from the model, the instructor asked the children to try to

answer before constructing the problem on a pegboard or graph paper. When

the children could answer from a "mental image," they were asked to instruct

the computer to solve the problem for them. The students knew, for the
generalization ax = b, they had to divide b by a to get the whole number part

of the answer. The remainder represented the numerator and the divisor
represented the denominator of the fractional portion . They had no experience

with common fraction-decimal relationships so the instructor introduced them

to the HyperCard instruction "b div a" and "b mod a" as way to get the whole

number and remainder. Given this information, the children made five fields

and scripted a "compute" button to do the computations. The following is a

student example:

A

X

1

( Calculate )
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The "calculate" button was scripted as follows:
on mouseUp

put card field "A" into a
put card field "B" into b
put b div a into card field "Xl"
put b mod a into card field "X2"
put a into card field "X3"

end mouseUp

The large majority of students were also able to program the following

generalizations:

Volume = l*w*h

Surface Area = (1*w +w*h +1*h)*2

a/b ± c/d = (a*d ± c*d)/(b*d)

(x+1/2)(x+1/2) = x(x +l) + 1/4

(x+1/2)(x+1/2) = x*x + x + 1/4

(x + 1/2)(x+1 1/2) = (x+1)(x+1)-1/4

OBSERVATIONS

As a final experience, the children were presented with missing number

problems in the form ax/b = c, where a, b, and c were whole number

constants as shown below:

4 *0 3 *ri E1 = 5= 11 = 5
5 7

ii*
5

The children were asked to work out a way to solve such equations and

then write a program to instruct the computer to do specific examples. The

children were separated into four groups (I - IV) based upon their conceptual

understanding and management of the computer as revealed by their work,

observations and personal interviews.

Seventeen children fit into group I. These children possessed a clear

understanding of the role of variables as "containers" into which numbers or

results could be placed. These children could explain how the computations

performed by the machine related to the derived concepts. These children

could script the machine and correct their errors without consulting the

instructor.

Nineteen children fit into group II. These children possessed a clear

understanding of the role of variables also. They had minor difficulties

scripting the computer. Most of their problems related to misspelled words or

omissions in scripting statements. In general, however, the children differed

little from those in group I.

Four students comprised group III. These children had conceptual

difficulty. They could not describe how operations with variables related to
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the arithmetic and the physical models used to develop it. They were
dependent upon their peers and exhibited counterproductive perceptions of

mathematics closely akin to those described by Frank (1988). That is, these

children seemed to be victims of a rule-orientation that inhibited their ability to

make logical connections between the symbols and underlying referents.

The remaining four students were placed in group IV. These students

profited little from the mathematics experience, nor did they manage to learn

how to deal with the computer. One of the children had an IQ of 81 and
language and reading difficulties. Another of the children in group IV had

difficulty interpreting auditory messages. His IQ was also in the lower
eighties. He read on a second grade level. The remaining two students had

flashes of insight , but seemed unable to profit from their experiences.

The thirty-six children in groups I and II were not intimidated by variables

nor did they view formulas as merely mnemonic devices for remembering

computational procedures as is often the case with students in beginning

algebra, or even some university students the author has known.

Five children in group II exhibited a peculiar behavior. The error
patterns they had acquired from pre-project experience persisted. Even though

the children could conceptually describe the ideas, explain what was going

on, and program the computer correctly, the error patterns returned on each

succeeding quiz. Holt (1982) and Davis and Mcknight (1980) described

children who were familiar with physical models for mathematical concepts,

but failed to use them as a basis for decision making. The quiz responses of

these five students seem somewhat reflected the conclusions of these studies.

The experiences of these five students with physical materials and the
Macintosh failed to help them overcome their previously learned error
patterns, at least within the time frame of the project.

CONCLUDING COMMENTS
The project did not represent a strict test of the potential of the Macintosh

as an aid to formalizing. Adequate controls and comparison groups need to

be established and the range of variables limited to qualify as a scientific effort

to determine exact effects. A more careful study is planned with the needed

computers housed in the school where they will be readily available to support

the instructional program. Nevertheless, the project results suggest that

thirty-six of the fifth grade students (groups I & H) developed a useful
concept of variable, a rudimentary notion of equivalent equations, equation



evaluation, and equation solving from their computer experiences and they

were able to relate these notions to the arithmetic they had generalized from

their experiences.
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NUMBER CONCEPTS

in



THE KINDERGARTNERS' PROCEDURAL UNDERSTANDING
OF NUMBER: AN INTERNATIONAL STUDY

Jacques C. Bergeron, Universite de Montreal

Nicolas Herscovics, Concordia University

This paper reports some results of an international study
(Montreal, Paris, and Cambridge,Mass.) on the kindergartners'
procedural understanding of number. Specific questions and tasks
assessed the range of their enumeration skills, their counting-on
skills and their utilization In both cardinal and ordinal contexts, as
well as their understanding of the counting backwards procedure.

Our investigation of the kindergartners' numerical knowledge is now in its fifth year and

our results reflect new approaches both at the theoretical level and at the methodological

level. At the theoretical level, our research has started with an epistemological analysis of

the number concept (Herscovics & Bergeron, 1988). This provided an overview enabling

us to perceive number as a conceptual scheme, that is as a network of related knowledge

together with the "problem-situations" in which it can be used. Regarding our

methodology, we have adopted the clinical approach used in case studies but have tried

to go beyond a few individual cases and have used larger samples averaging thirty odd

children in order to identify likely patterns of thinking.

Using the above analysis we have developed a sequence of about forty tasks aimed at

uncovering the child's numerical knowledge.The samples used in our study involved 29

Parisian kindergartners of average age 5:8 whose school was situated in a lower socio-

economic neighborhood (lower middle class and working class); 30 kindergartners of

average age 5:10 whose school was located in a lower socio-economic neighborhood in

Cambridge, Mass.; 14 of these children were in regular classes whereas 16 of them were

following an activity oriented program for early childhood based on Mary Baratta-Lorton's

Mathematics Their Way (1976); 32 kindergartners of average age 6:2 from 4 different

schools in the Montreal area, two being situated in higher socio-economic suburbs and

two located in lower socio-economic neighborhoods. For the overall project, which dealt

with all the different aspects of understanding number, three to four individual interviews

lasting on average 30 minutes were carried out with average children selected by the

Research funded by the Quebec Ministry of Education (F.C.A.R. Grant EQ-2923)
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school authorities. The interviews took place in Paris between the end of February and

the beginning of April 1988, and in Montreal and Cambridge between the end of April and

the beginning of June.

UNDERSTANDING OF ENUMERATION

Pre-requisite to any mastery of the enumeration procedures is the child's memorization of

the number word sequence. However, prior research has shown that a majority of

kindergartners perform better on the enumeration of a large set of objects than on the

mere recitation of the number-word sequence (Anne Bergeron et al.1986). Thus in order

to assess the extent of their knowledge of the number-word sequence, a set of 76 chips

was provided with instructions to "Count as far as you can". The following table indicates

the distribution of their enumeration skills.

N 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70+ Average

Cambridge
Regular classes 14 0 0 3 3 0 1 3 4 53.7
Lorton classes 16 0 0 0 0 0 1 1 12 70.8

Total 30 0 0 3 3 2 2 4 16 62.8
Paris 29 1 10 6 5 1 3 0 3 32.4

Montreal
Higher Soc.Ec. 16 0 4 1 4 1 0 4 2 45.1
Lower Soc.Ec. 16 1 3 4 4 0 1 1 2 37.3

Total 32 1 7 5 8 1 1 5 4 41.2

What is striking at a first glance is the similarity between the Parisian and Montreal samples,

this, in spite of the fact that the French children were six months younger than the

Canadian ones . But even more striking is the shift in the distribution of the Cambridge

children. Not a single child is in the 0-19 range, in contrast with the 25% and 37% in the

other two cities. Moreover, half the Cambridge children can count beyond 70, compared

to 12.5% and 10.3% in the other two cities.

The distributions provide another interesting fact. It seems that for the Montreal and

Parisian children, as well as for the Cambridge regular classes, the number 39 constitutes

a temporary plateau: 65.6%, 75.8% and 42.9% respectively are within the 0-39 range.

Perhaps this might indicate that these children have not yet learned the sequence of

multiples of ten. That two decades, from 20 to 29, and 30 to 39, are sufficient for the

generalization of the decade structure, seems evident from the fact that when the
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children learn their multiples of ten, their range jumps up to the sixties and seventies. Few

of them remain in the 40 to 59 range.

A greater frequency of the Parisian children in the 50-59 range might be explained by a

lack of knowledge of the multiples of ten beyond 50. One might conjecture that the 5

Montreal children in the 60-69 range (16.7%) have difficulties with 70 since in French,

the tens pattern changes (..., cinquante, soixante, soixante-dix, ...). However, the data

does not bear this out, since in the regular Cambridge classes, 3 out of 14 children

(21.4%) are in the same range.

UNDERSTANDING COUNTINGON

Fuson & Hall (1982) report that when the number word sequence becomes a breakable

chain, children can start counting-up (reciting-up) from a given number and that this skill

translates into a cardinal operation, that of counting-on in the context of addition (p.52).

In our study, we have experimented numerical tasks requiring counting-on in non-additive

situations involving both cardinal and ordinal contexts.

A global look at the results indicates that nearly all kindergartners can recite up from a

given number (only 7 out of 91 cannot) and that most of them do not even need a running

start. Comparing the performance in the three cities shows that nearly all (90%) the

Cambridge children can start at 12, that about two thirds of the Montreal children (68.8%) ,

and about half of the Parisian sample (48.3%) can also do so. These differences can

easily be explained by the emphasis on counting found in the Cambridge school and by

the age difference of the Parisian children who were six months younger than the

Montreal ones.

Having assessed the children's reciting-up skills, some special tasks were designed to

determine their spontaneous use in the solution of cardinal and ordinal problems. Initially,

these tasks were similar to the one used by Steffe, von Glasersfeld, Richards and Cobb

(1983). Each child was presented with a row of 11 chips glued to a cardboard, the

interviewer stating:

Here Is a cardboard with some chips. Look, I'm putting it in this bag

(while inserting it in a partially opaque plastic bag)

[ Ir
I

Look,. six chips are hidden here (indicating the opaque part)
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Can you tell me how many chips are in the whole bag?

The results indicate that with the exception of the Lorton classes, the predominant

procedure used was that of figural counting: 50% of the children used it. It should be

noted that for the regular Cambridge classes, the procedure was used successfully at a

rate of about 40%, but with at other groups, the success rate was about 70%. Counting-

on was the main procedure for the Lorton classes (56%). And in all cases, including the

other samples, its use guaranteed success. In spite of the care taken in formulating the

questions, nearly a third of the Parisian sample focused only on the visible chips.

Following the cardinal task, the same material was used on an ordinal task. It required

locating the chip corresponding to a given rank. Using the same material as before, the

interviewer asked:

Remember, there are six chips that you can't see. Here Is the first one

(pointing out the one on the extreme left of the hidden part)

Can you put this little arrow next to the ninth chip?

The data show that once again, with the exception of the Lorton classes, figural counting

is the most common procedure, its use ranging from 65% to 75%, as compared with 43%

to 56% on the cardinal task. The Lorton group again favored counting-on. The ordinal

task seems to have been better understood by the Parisian children since only two of

them restricted their counting to the visible chips; six of them used counting-on, as

opposed to only one for the cardinal task.

Although most children can recite-up, the use of the counting-on procedure is relatively

low, except for the Lorton classes, even if we use the best performance on ordinal tasks.

The number of these children is 4 out of 13 (30.8%) for the regular Cambridge sample, 7

out of 23 (30.4%) for the Parisian children, 5 out of 16 (31.3%) for the Montreal sample

from higher socio-economic neighborhoods, and 6 out of 16 (37.5%) for the other

Montreal sample, as compared with 12 out of 16 (75%) for the Lorton group. Quite clearly,

only about a third of the children who possess the reciting-up skill think of using it in the

above tasks.

These results bring into question the meaning of counting-on for most of these children.

To investigate their interpretation, a simple task in which they were asked to count-on was

proposed. The interviewer presented them with 12 chips glued to a cardboard. This
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cardboard was then inserted in a partially opaque plastic bag so that 4 chips would no

longer be visible:

Here Is a cardboard with chips glued to it

And I'm putting them In a bag.

Look, there are some hidden chips. When I counted them, I started from
here (pointing to the first hidden chip on the left) and when I got here (putting a

small arrow next to the sixth chip) this was the sixth.
Can you continue counting from here on, from the sixth one?
When the counting was completed:

Can you tell me how many chips are In the whole bag?

The results show that out of 87 subjects who could count-on, only 33 of them (37.9%)

could tell how many. Thus a full 62.1% could not ! Of course, this brings into question the

children's interpretation of the counting-on procedure. The surprisingly poor

performance on this task might be explained in terms of two conjectures: (1) Perhaps it is

the non-visibility of some of the objects that affects the children's capacity to relate the

counting-on procedure with the cardinality of the set; (2) Perhaps it is their need to still

establish a one-to-one correspondence between the number-words and the objects.

A closer look at the performance of the Lorton classes brings about some further

questions. Out of 16 children, 9 used the counting-on procedure to solve the cardinality

question. Of these 16 subjects, 8 could tell "how many?" after counting-on. At a first

glance, this would conform to our expectations. But a more detailed analysis shows that of

the 9 subjects who counted-on in the first cardinal task, 6 of them did not succeed in the

second cardinal task: although they counted-on from 6 to 12, they could not state the

cardinality of the row. One could attribute this lack of consistency to a certain instability of

these children's interpretation of the counting-on procedure. However, an alternate

hypothesis might be suggested on the basis of the difference between the two tasks at

hand. In the first one, the child starts counting-up from a cardinal number ("There are six

hidden chips") whereas in the second one, the start is from an ordinal number ("When I
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counted them... this was the sixth one"). This third conjecture points to a possible gap in

the children's integration of the cardinal and ordinal aspects of number.

UNDERSTANDING COUNTING BACKWARDS

In the Fuson & Hall (1982) hierarchy the next two skills are counting backwards from a

given number down to 1, and counting backwards from a given number and stopping at

another given number. These procedures prove to be important for, as mentioned by

Carpenter & Moser (1984), they are often used by children up to Grade 3 in the solution

of subtraction problems. Our investigation follows the same sequence as in the last

section: the recitation skills, the spontaneous use of the corresponding counting

procedures in the solution of numerical problems, and finally, the mastery of the counting

backwards procedure itself.

In the assessment of the backward recitation, children were asked:

Can you count backwards starting from 12?

We did not insist on starting at 12 since most children find it easier to count back from 10.

Even then, if they found it too difficult, we suggested trying from 6 or 7. One finds that

reciting backwards down to 1 is mastered by all the kindergartners in the Cambridge

samples, that 18 out of 29 of the Parisian children (62.1%) and nearly all the Montreal

subjects (30/32 = 93.8%) have managed to do so. However, the distribution indicates

marked degrees of achievement as shown by the ability to recite backwards from 12 (23,

7, and 12 respectively)

To determine if children who could recite backwards the number-word sequence would

spontaneously use this skill in numerical situations, the following problems were set:

The interviewer presented a row of 12 chips glued onto a cardboard and then, in front of

the child, proceeded to hide 6 chips on the extreme left with another small cardboard

strip:
Look. I've hidden some chips

10

1,11,',' '. ',' '-'.1. . I.,' ''" .1. ',. I,'
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(a) When I counted them, I started counting from here (indicating
the extreme left of the hiding carboard), and when I got here (placing the
arrow next to the 10th chip), this was the tenth, the number ten chip.
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Do you have a way to find out how many are hidden?
(If the child could only count back from 6, two chips were hidden and the arrow

was placed next to the sixth chip)

(b) Hiding 3 chips on the left and replacing the arrow on the 10th chip
Now I've hidden some chips again. Look, I'm putting back the
arrow next to the tenth chip. Can you show me where Is the
seventh chip?

(If the child could only count back from 6, 2 chips were hidden, and the arrow
placed next to the 6th chip while asking to be shown the 3rd one)

The data show that the success rate on the cardinal task was very low. Among the 78

children who could recite backwards to 1, only 12 (15.4%) thought of counting backwards

to find the hidden part. The ordinal task was handled with much greater success. About

half the children who had the pre-requisite reciting skills did use them in the solution of

the ordinal problem. Theoretically, the ordinal task should be somewhat more difficult,

since in finding the 7th chip, the child must know when to stop. The surprisingly different

results on the cardinal task again raise some interesting questions. Could they be

attributed to a lack of integration of cardinality and ordinality? When the 10th chip is

shown, the child needs to count back from an ordinal number and must shift to a cardinal

frame when finding the number of hidden chips.

CONCLUSION

Regarding the basic enumeration skills, counting from 1, the Cambridge samples proved

to be ahead of the Montreal ones who themselves were slightly ahead of the Parisian

one. The more sophisticated procedure of counting-on was mastered by most of the

subjects. However, few of them used it in the cardinal and ordinal tasks, with the

exception of the Lorton group. The particularly surprising inability, by 62% of the pupils,

of answering the question "how many?" after they had counted-on as requested, points

to a lack of integration of the counting-on procedure with their understanding of

cardinality. Another problem of integration was evidenced by the children's failure to find

the cardinality of a hidden part by counting backwards from an indicated rank. While these

are interesting problems at the research level, they should not obscure the fact that in all

the samples, these kindergartners possessed a broad and varied knowledge about

number. For instance, many could double count forwards and backwards.

103

1 1



REFERENCES

Baratta-Lorton, M. (1976), Mathematics their way, Addison-Wesley: Reading, Mass.

Bergeron, A., Herscovics, N., Bergeron, J.C. (1986). Counting tasks involving some
hidden elements. In Proceedings of the Eighth Annual Meeting of PME-
NA, Lappan,G. & Even,R. (Eds), East Lansing, Michigan: Michigan State University,
21-27.

Carpenter, T. P., and Moser, J. M. (1984). The acquisition of addition and subtraction
concepts in grades one through three. Journal for Research in Mathematics
Education,15, 179-202.

Fuson, K.C., Richards, J. & Briars, D.J., (1982), The acquisition and elaboration of the
number word sequence, in C.J. Brainerd (Ed.), Progress in cognitive
development: Vol.1, Children's logical and mathematical cognition,
New York: Springer-Verlag.

Herscovics,N., & Bergeron, J.C, (1988), An extended model of understanding, in
Proceedings of PME-NA-10, Behr,M.J, Lacampagne,C.B., & Wheeler, M.M.
(eds), Northern Illinois University, DeKalb, Illinois, 15-22

Steffe, L. P, von Glasersfeld, E., Richards, J., and Cobb, P (1983). Children's
counting types: Philosophy, theory, and application. New York:
Praeger.

Note of thanks
We wish to thank the school authorities and teachers in the different schools who co-
operated so gratiously and made this investigation possible.

In Paris we wish to thank Annie Khenkine who made all the necessary contacts, the
teachers Mesdames Arlette Herisson, Francoise Peros, the school principal of the Ecole
Maternelle de la rue Bidassoa, Madame Mireille Gauche, the School Inspector for the 20th
arondissement, Madame Maire, the school inspector for the Academie, Monsieur Pagny.
We also wish to thank the Sisters of the Maternite Ste-Felicite who were so kind in helping
us with our accommodation.

In Cambridge we wish to thank Ms Yolanda Rodriguez who made all the necessary
arrangements, the teachers, Ms Carol Basile, Valerie Carr, Patricia Porio, Kim Sneed-
Clark, the Principal of the Martin Luther King Jr School, Mr. John Caulfield, Ms Lynn
Stuart, Coordinator of Primary Education, Dr. Deborah M. McGriff, Assistant
Superintendent, Curriculum & Instruction

In Montreal, we wish to thank: Mesdames Claudette St-Denis and Helene Bombardier at
Ecole Querbes and the school principal, M. Raymond Baril; Mesdames Louise Bonin,
Marie Gagnon and Louise Mageau at Ecole St-Clement and the school principal, Mme
Micheline Faille; Mesdames Denise Hetu and Lise Gauthier at Ecole Martin-Belanger and
its school principal Mme Huguette Tomassin; Mme Louise Dansereau at Ecole St-Germain
and its school principal Mme Henriette Leger; M. Robert Maio, principal at Ecole Laurier;
Mrs Mary McCambridge at St-Kevin's School and its principal, Mr.A. Green; M. Pierre
Richard, Mathematics Consultant of La Commission Scolaire Ste-Croix and Mme Claire
Berthelet, School Consultant at the Commission des Ecoles Catholiques de Montreal.

Special thanks to our research assistants, Mesdames Anne Bergeron, Sylvie Fournier,
Kim Hardt, Annie Kenkhine, and Marielle Signori.

104

111



EFFECTS OF INSTRUCTION ON NUMBER MAGNITUDE

Judith T. Sowder and Zvia Markovits
San Diego State University

Fourth-grade teachers taught specially prepared units on
decimal numbers and fractions that emphasized
comparing these two types of numbers. A written
pretest and individual interviews indicated that students
had little understanding of number size concepts.
Interviews held immediately after instruction and again
at the end of the school year showed that students could
compare fractions and decimal numbers and could give
reasonable explanations for their answers. A curriculum
that spends more time developing these concepts might
help children acquire better number sense.

Concepts related to number magnitude have received little attention from

researchers. Investigators who have looked at number magnitude have usually had

a broader research focus for their work. Consequently, their research reports give

only a limited amount of information about children's number size concepts. Also,

their research is frequently limited to one type of number, usually at one grade

level. Even so, their results provide valuable insights into children's understanding

of numbers and related symbol systems.

Studies that included comparing and ordering decimal numbers clearly

show how students overgeneralize features of whole numbers. In the
Sackur-Grisvard & Leonard (1985) study, fourth graders judged 3.7 to be smaller

than 3.53 because 37 is smaller than 353 or because 7 is smaller than 53. Almost

half of the sixth and seventh grades tested by Hiebert and Weame (1986) selected

.1814 as the largest number of the set .09, .353, .3, and .1814. Young children's

understanding of order and equivalence of fractions is also dominated by whole

number knowledge of ordering (Behr, Wachsmuth, Post, & Lesh, 1984; Kerslake,

1986). Children focus on either the numerators or the denominators, and order the

fractions accordingly. Thus, 3/5 would be considered larger than 3/4, because 5 is

larger than 4. Sowder and Wheeler (1986), in a study that considered performance

on number magnitude tasks at grades 4, 6, 8, and 10, found that overgefieralization

diminishes as children proceed through the grades, but that the ability to compare
fractions is much slower to develop than the ability to compare decimal numbers.

This fact is not surprising, since comparing fractions cannot be as easily stated in
terms of rules to follow.
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Curriculum developers have also paid scant attention to the potential power

of work on number magnitude for increasing understanding of numbers and their

systems of symbolization. Textbooks contain few lessons on comparing and
ordering fractions or decimals, and when they do occur, they frequently do not

focus on number meaning. For example, a widely used fourth grade mathematics

text with a 1987 copyright has one lesson on comparing decimals and one on
comparing fractions. The decimal number lesson compares numbers with the same

number of decimal places, such as 3.6 with 3.8, or 4.83 with 4.92. The fraction

lesson compares fractions with the same denominator, gives rules and problems

comparing a fraction with 1, and finally has students compare pairs of fractions by

first locating them on a number line that appears in the text with all the fractions

located and named. None of these exercises required any real understanding of

fraction and decimal size.

The purpose of the study described here was to investigate the effect of

instruction on comparing fraction and decimal numbers. In particular, we wanted

to know whether instruction that focused on the meaning of the numbers being

compared would lead to increased understanding of fraction and decimal numbers

and associated symbols.

Subjects and Procedure
Students from three fourth grade classrooms participated in the study.

Two classes were from a school located in a middle-class neighborhood, the other

from a school located in a slightly lower socioeconomic community. The schools

were selected on the basis of willingness of principals and teachers to participate.

One teacher from each school taughts units on decimal numbers and on fractions.

Both units were prepared by the investigators. Students from all three classrooms

were given a written pretest. In each of the two classrooms where teachers used

our instructional units, ten student of average ability, as ascertained by the teachers,

were selected for more intensive study. All 20 students were interviewed at the

beginning of the study in January, 14 were interviewed after the decimal unit, 15

after the fraction unit, and all 20 were again interviewed at the end of the study in

June.

Instructional Units
The decimal unit contained seven lessons, and extended over
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approximately ten 50-minute periods. The first five lessons introduced students to

base ten blocks by requiring them to represent whole numbers with the blocks, and

finally to represent decimal numbers with the blocks. The fifth lesson also included

representing and comparing numbers such as 0.4 with 0.40; and 0.4 with 0.04.

The sixth lesson required students to represent money as decimal numbers, and to

compare amounts. The final lesson (requiring about two class periods) focused on

comparing decimal numbers both by first representing them with blocks, and then

comparing decimal numbers without the blocks. Each lesson began with a long

segment developing the concepts in the lesson and presenting examples. Students

were required to complete a set of problems in class. The problems were then
displayed on an overhead projector and discussed by the class. A second set of

problems was usually given for homework and discussed the following day.

The unit on fractions contained nine lessons, and the teachers completed

the lessons in approximately ten days. Fractions were introduced as quantities, so

that a fraction symbol was shown to represent some amount, just as a whole
number symbol did. In the second lesson, students were given clock faces and
asked to draw in a half hour, a quarter of an hour, and a third of an hour. Later,

using pieces of circles and squares, fractions with the same numerators and
different denominators were compared, then fractions with different numerators

and same denominators were compared. One lesson focused on equivalent
fractions. Following that, students were asked to compare fractions with one-half,

and formulate rules for when a fraction is greater than one-half and less than
one-half. Pairs of fractions with the same denominator were presented, and
students were asked to chose the fraction closer to one-half, or closer to zero, or

closer to one. Fractions were located on a number line, then compared. In the

eighth lesson, pairs of fractions were compared by choosing the most appropriate

technique. Finally, fractions and decimals were compared in size. The format of

the lessons was like that for the decimal unit.

Student Performance Before Instruction
Only 9% of the 86 fourth-grade students who took the written pretest

identified 3.7 as the larger of 3.7 and 3.53. This is the same problem used in the

Sackur-Grisvard and Leonard (1985) study mentioned earlier, and our results were

comparable to the results found there. On fraction items, given 1/3 and 1/4, 5%

selected 1/4 as the number closer to 0; 7% selected 2/3 as the larger of 2/3 and 2/4;
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but 63% could correctly identify 4/3 as larger than 3/4.

The interviews included tasks with whole numbers, decimal numbers and

fraction numbers, and focused on place value, symbol meaning, number line
concepts, and number magnitude. Some mental computation tasks were also
given. Only the tasks directly pertaining to number magnitude are presented here.

On the initial interview, a decimal item asked whether one meter was closer

to 0.9 meter or to 2 meters. Most students selected 0.9 meter, but this result is
suspect since the item was read aloud to students as nine-tenths. Students who did

answer this question correctly were unable to select the correct points on the
number line corresponding to 0.3 or to 0.8, where the letter A was placed at 0.3, B

at 0.8, C at 1.2, and D at 3. Of particular interest here is that one class had
completed a unit at the beginning of the year on decimal numbers, while the other

class had not yet received any instruction on decimal numbers, yet there was no real

difference in student responses between the two groups.

In a fraction item, students were told that two children were painting a

fence, one on either side. The students were asked which of the two children was

ahead after one had painted 1/5 of a side, the other 1/8 of a side. Two of the twenty

students could answer correctly but only one of the two could give an explanation

indicating some understanding of the relative size of the two numbers. Ten
students were then told that after two more hours, one had painted 1/2 of a side,

and the other 2/3 of a side. Three of these ten students answered correctly and

justified their solution by shading in the rectangles given as the two sides of the
fence. The other ten students were to similarly compare 1/2 with 3/10. Only one
student gave a correct answer with a reasonable explanation: "It's half, and he only

painted 3 out of 10."

Student Performance After Instruction
Immediately after instruction, 14 students were asked which was larger,

14.7 or 14.26. Of the 14, 12 selected 14.7, and gave reasons indicating that they

understood why this was so: "There's a seven in the tenths place and a two in the

tenths place"; "This has seven longs and this one only two longs": "I thought of

money, 700 and 260". In the final interviews, held approximately ten weeks after

the decimal unit, students continued to showed a much better understanding of

decimal numbers. When asked to compare 7.3 and 7.29, 18 of the 20 students

selected 7.3. Some students compared tenths or longs. Students who changed 7.3
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to 7.30 seemed to understand that they were comparing thirty-hundredths with

twenty-nine hundredths. The two who selected 7.29 were both confused by the
fact that "7.29 has hundredths and 7.3 does not". Eighteen out of twenty also
indentified 5.09 as smaller that 5.90, with explanations such as "...only
9-hundredths versus 90-hundredths" and "This is 9 small blocks, this is 9 longs."

In another task, students were asked to order 0.72, 0.314, and 0.7. This was
considered to be a transfer item, since the instructional lessons did not include

ordering three numbers, nor did they include thousandths. Nine of ten students in

one school were successful, but the teacher in this classroom had introduced
thousandths on her own. Students at the other school had not encountered
thousandths, and only three of the students were successful with this task.

The fence painting item was used again in interviews of 15 students
immediately following the unit on fractions. The first comparison was between 3/6

and 3/4, and 14 of 15 answered correctly: "3/6 is only half, 3/4 is almost a whole";

"Fourths has bigger parts". When comparing 3/8 of the fence with 1/2 of the
fence, 12 of 15 students answered correctly: "It would have to be 4 out of 8 to be

half'; "4/8 is bigger that 3/8". In a second item, students were asked to sort ten

fractions into three piles: those close to 0, those close to 1/2, those close to 1.

Fourteen of the 15 students could correctly place all ten fractions. A third item

asked students for a fraction between 1/4 and 2/4. This had not been covered in the

instruction. Only four students were able to find one, either 1/3 or 3/8. But when

asked to find a fraction between 1/4 and 1/2, six more students identified 1/3 as
being between the two.

On the final interview, approximately five weeks after the fraction unit, 18

of the 20 students identified 2/3 as the larger of 2/3 and 2/5, with reasons such as

"There are bigger pieces in 2/3"; "2/3 is more than a half. 2/5 is not half of 5 (sic)".

Of the 20 students, 19 recognized that 1/2 was larger than 3/8: "To be equal, it has

to be 4 instead of 3". Comparing 2/3 and 3/4 was much more difficult for the
students. They had not had a problem this difficult in the instructional unit.
However, 8 of the 20 selected 3/4 and made drawings or "pictured them shaded in

my mind" to show they understood the problem. The most common incorrect
answer was they they were equal because each "has just one piece left".

Discussion
This study was undertaken in the belief that the meaningful study of
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number magnitude concepts would lead to increased number sense. The high rate

of retention illustrated in the final interviews indicates that children did understand

fraction and decimal numbers sufficiently well to compare numbers in size.
Students had somewhat more difficulty with fraction items than with decimal items.

As mentioned earlier, this might be due to the fact that it is more difficult to

formulate a small number of rules to follow when comparing fractions. Certainly,

rules were formulated by students. For example, the rule "If the numerators are the

same, then the fraction with the largest denominator is the smallest fraction" was

formulated in each class at the conclusion of a lesson in which a large number of

such cases were presented. However, no rule could be easily formulated for

fractions where both the numerators and denominators were different.

The actual instructional time spent on number comparison was actually

quite minimal. Each unit had several preliminary lessons introducing children to

the manipulatives used in the units. It therefore seems that in classrooms where

fractions and decimal numbers are taught meaningfully, with manipulatives, the

small amount of additional time needed to teach number size concepts would be

time well spent. Understanding of these concepts that should also assist students in

later learning of computational estimation involving fractions and decimal numbers.
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FIRST GRADERS' UNDERSTANDING
OF THE PRECONCEPTS OF NUMBER

Anne Bergeron, Universite de Montreal

Plurality and position can be considered as preconcepts of natu-
ral number. In a study of the kindergartners' constuction of these
two pre-concepts, some tasks related to the logico-physical ab-
straction of number were found to be quite difficult for them. In the
present study, we interviewed 32 first graders using the same
tasks. It was quite surprising to find that the same difficulties re-
mained and that even with a higher success rate, at least half of
the subjects had not yet constructed the invariants studied.

The idea of the pre-concepts of number stems from a model used for
the analysis of this conceptual scheme developed by Herscovics and
Bergeron (1988a). In thii model two tiers are identified in the description
of the understanding of a mathematical concept: the first tier dealing with
the understanding of the physical pre-concepts, the second tier with the
understanding of the emerging mathematical concept. Regarding the
concept of number, two specific notions are viewed as pre-concepts of
number: the notion of plurality (which distinguishes between one and
many), and the notion of position of an element in an ordered set. Of
course, when number is viewed as a measure of plurality and as a mea-
sure of position, the emerging mathematical concepts are those of cardi-
nal number and ordinal number.

This paper deals solely with the two .pre-concepts, plurality and po-
sition. According to the above mentioned model, one can identify three
levels of understanding of these two physical notions. The first level, that
of intuitive understanding, is based essentially on visual apprehension; it
enables the child to compare two sets and to decide where there are
many or few, if two sets are equal or not. It also enables the child to judge
positional notions such as before, after, between, at the same time, first
and last.

At the second level, that of logico-physical procedural understand-
ing, the child can generate pluralities and ordered sets subject to the
various constraints listed above. The generation of such sets is no longer
approximate, but is based on a very accurate and precise procedure us-
ing one-to-one correspondences.

Research funded by the Quebec Ministry of Education (F.C.A.R., Grant EQ-2923)
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At the third level of understanding, that of logico-physical abstrac-
tion, the children perceive the invariance of plurality and position, when-
ever the given sets are subjected to various spatio-physical transforma-
tions such as elongation, dispersion, translation, partial hiding of the sets.

Using these criteria for the description of understanding, specific
tasks have been designed and used with kindergartners in four Montreal
schools. Results have been reported at last year's PME meeting in
Veszprem, Hungary (Bergeron, J.C. & Herscovics, 1988; Herscovics &
Bergeron, J.C., 1988b). In order to assess the evolution of these pre-con-
cepts among young children, the same set of tasks was used with 32 first

.--graders from four different schools in Greater Montreal.
Of course, all those tasks that were handled successfully by kinder-

gartners were also handled easily by first graders, as could be expected.
However, on the three tasks that proved to be difficult for kindergartners,
the first graders' results were surprisingly low. The present paper will re-
port the results obtained on these three tasks and compare them with the
data obtained with kindergartners.

Invariance of plurality with respect to the visibility of objects
Children were given a row of 11 chips glued on a. piece of card-

board. They were told: "Here is a large cardboard with little chips'glued to
it. Look, I'm putting the cardboard in a bag (the interviewer inserting the
cardboard in a partially opaque plastic bag so that the three chips at the
extreme left are no longer visible). And now, are there more chips in the
bag, less chips, or the same number as before?".

.......1
To the children who first answered that the number of chips in the

bag had changed, the interviewer asked: Are you telling me that there
are now fewer .(or more) chips in the bag (while moving her hand from
one end of the bag to the other, in order to indicate that all the chips were
to be considered)'. Two children spontaneously said that there was the
same number of chips as before, while 3 changed their answer, following
the additional question, as exemplified by the comment of one little boy:
"There is the same as before. There are some that we don't see so it
means that we see less" The following table compares the first graders'
success rate to that of the kindergartners:
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n success rate

Kndergartners
First graders

30
32

4 (13.3%)
5 (15.6%)

Even at the end of the first year of schooling, the majority of students
have not yet discovered the invariance of the plurality of a set when part
of it is hidden from view. Of course, this does not mean that these chil-
dren did not conserve quotity, that is, the ability to predict the number of
chips in the bag, had they been counted before (Greco, 1962). For in fact,
Herscovics & Bergeron, J.C. (1989) have established that 78% of the
kindergartners did already conserve quotity. Somehow, we had expected
that the disparity between the conservation of plurality and the conserva-
tion of quotity would have been resolved at the end of grade 1.

Invariance of position with respect to the visibility of the
objects

A row of 9 little trucks was drawn on a cardboard, each truck
coloured differently.

44EgggEl4g6r4BEJ
orange bleu ouge vent noir blanc brun jaune

tunnel

The children were told: " Look, here is a parade of trucks. Can you
show me the green truck?" (in fourth position). After it was duly pointed
out, the interviewer announced "The parade must now go under a tunnel"
and then proceeded to slide the cardboard under a 'tunnel' so that the
first three trucks were hidden. The children were then asked: a)"Do you
think that the green truck has kept the same number in the parade?"
After they had answered this question, they were asked : b) "Do you think
that when the trucks are in the tunnel, this can change the number of the
green truck ? "The above task was repeated with the row being moved
up by the length of another three trucks (question c).

Even if for the two groups the rate of success for the invariance with
respect to visual perception is greater for the concept of position than for
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the concept of plurality, the rate is still low, as shown in the following
table:

n success rate for the questions
a b c

Kindergartners 30 16(53.3%) not asked 15(50.0%)
First graders 32 9(28.1%) 18(56.3%) 17(53.1%)

A surprising result is that for question (a) the rate of success of the
kindergartners is almost twice as high as for the first graders (53.3% vs
28.1%). A likely explanation might be that we had modified the material
presentation of this task. Whereas in the preivious year we had used toy
trucks with the kindergartners, we now used a strip of cardboard with
cars drawn on it and a tunnel which completely prevented the subjects to
see those cars underneath it. The reason for this change was that in the
interviews with kindergartners we noticed that many children glanced at
the cars inside the tunnel, thus jeopardizing the objectives of the task
which aimed at evaluating the effect of having part of the row hidden from
view.

For question (b) we cannot compare the kindergartners with the first
graders since this part was added only afterwards. We wanted to find out
if a chance to reflect on a general property relative to the determination of
the position of an object in a row would be different from a judgement
made in the specific situation where the physical set up certainly influ-
ences the children's judgement. It is interesting to note that under these
circumstances, twice as many subjects (56.3% vs 28.1%) were able to
reach a right conclusion.

In the case of question (c), the rate of success for the first graders is
almost identical as for question (b) (53.1% vs 56.3%). Two likely hy-
potheses can be invoked: on the one hand, the preceding reflection
about the invariance of position when some objects are hidden might
have helped them to overcome the cognitive obstacle induced by the
hidden part; on the other hand, the improvement from question (a) might
also be attributed to the fact that in question (c) the first three cars were
visible, thus making it more evident that the hidden cars were still part of
the row. In spite of the fact that they were not made to reflect on the gen-
eral property (question b), the kindergartners obtained a rate of success
just as high as the first graders. This is probably due to the fact invoked
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above, that is, the cars hidden underneath the tunnel could be perceived
by looking alongside the row.

As was the case for the invariance of plurality, the children were
also very dependent on visual perception of the objects for determining
the position of an object in a row.

Invariance of position with respect to translation.
The interviewer aligned a row of 9 identical cars, and asked the

children "Would you make a parade just like mine and next to it?" while
handing over another 9 cars. Then using a blue colored sheet of paper (a
river) and a small piece of cardboard to represent a ferry, she explained:
°The parades must cross the river on a little ferry boat. But the ferry can
only carry two cars at a time, one car from each parade. When we are
ready, we take one car in my parade (putting her lead car on the ferry),
and one car from your parade "(asking the children to put their lead car
on the ferry). The ferry then crossed the river with the two cars, unloaded
them, and came back for two more:

414 " 414 4ito 414
" itk 404. 4116.

The cars were then put back in their initial position and the subjects
were told: "Now rm putting this little arrow on this car (the seventh car in
the interviewer's row). Can you put this other arrow on the car in your pa-
rade which has the same number as mine?" Once this was done, the in-
terviewer announced "Now look, the parades move on" while moving the
child's parade a small distance and moving her own parade somewhat
further by the length of two cars:

44 44. 404. 41* 4116. 4tI 44 416.
44 44 44 44 44 441 44"

The children were asked : "Do you think that the two cars with the
arrows will cross the river at the same time?" Following their answer,
they were asked to show the interviewer how the two parades were to
cross the river in order to verify that they were aware that the cars had to
be ferried in pairs (see column 2). The interviewer then asked if the two
cars marked by the little arrows still had the same number. Finally, they
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were asked if they thought that those two cars (now both in fifth position)
would cross the river at the same time.

The following table presents the results obtained:

will cross will cross

at the underst. still have at the
N same time situation same no same time

Kindergartners 30 10.0% 96.7% 26.7% 23.3%
First graders 32 21.9% 87.5% 62.5% 50.0%

At the kindergartners' level, it was found that very few children had con-
structed the invariance of position with respect to a translation. The first
time the question was asked only 10.0% answered spontaneously that
the two cars with the arrows would cross the river together. But when,
following this they were asked if the two cars still had the same number,
twice as many subjects (26.7%) answered affirmatively. This question
probably induced an opportunity to reflect on the link between the posi-
tion of the two cars and its invariance.This is reflected in the greater
number of pupils believing that the two cars would cross at the same
time, when asked the same question with the cars being in fifth position.
It is also possible that a second factor operating here is that after the
children had crossed two pairs of cars, the two marked cars were both
closer to the river. So, we have here a combination of two factors: pro-
voked reflection and visual perception. The fact that the great majority of
these kindergartners has not yet perceived the invariance of position
cannot be attributed to the lack of understanding of the task at hand. In
fact, 96.7% of them have been able to manifest their understanding when
they were asked to show the interviewer how the two parades were to
cross the river.

The same discussion applies to the first graders except for the suc-
cess rate that is approximatively double that of the kindergartners.
However, a 50% success rate is quite low taking in consideration a full
year of prior schooling.
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CONCLUSIONS
The results show that even after a first year of formal schooling, the

children still have problems with some aspects of the invariance of num-
ber, namely, the invariance of plurality and position with respect to the
visibility of the objects, and the invariance of position with respect to
translation. We see that the visual apprehension greatly affects the rea-
soning of children.

In fact, we saw that for the invariance of plurality with respect to vi-
sual perception, no difference was found between kindergartners and
first graders, both having obtained a very low success rate of about 15%.
For the invariance of position with respect to visual perception we found
that about half the first graders had not discovered it. A comparison with
the kindergartners could not be made because of a modification made in
the physical materials used.

For the invariance of position with respect to translation we saw that
the first graders had a success rate twice that of the kindergartners, but
with still half the subjects not aware of this invariance. However, two
things strike us here. First, the fact that having made the students reflect
on the mathematical property ('do they still have the same number?") has
probably contributed to their progress. Secondly, that learning has oc-
curred so easily, with only one indirect intervention.
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The Role of Spatial Patterns In Number Development

Grayson H. Wheatley and Jane-Jane Lo

Florida State University

Based on clinical Interviews with primary school
children, six types of responses were identified
to dot pattern tasks. A teaching experiment was
conducted with one child to explore the use of
dot patterns in number development. This paper
discusses her use of counting methods and dot
patterns and her progress during the teaching
experiment. The importance of setting and
context were identified as critical in the child's
selection of method.

While Steffe, von Glasersfeld, Richards, and Cobb (1983) have developed a model of

young children's counting which is quite useful, Hatano (1982) has proposed a mental

regrouping strategy based on dot patterns as an alternative model of young children's

number development. Apparently Japanese arithmetic instruction which makes

extensive use of spatial dot patterns and little use of counting is effective (Easley,

1983). A better understanding of the potential of dot pattern use by children in

constructing number and number operations is needed. Furthermore, imagery may

play a prominent role in mathematical reasoning generally (Bishop, 1989; Presmeg,

1985; Skemp, 1987). The use of imagery and in particular, dot patterns in constructing

number concepts, is not well understood. The goal of this research project was to

explore children's number constructions as influenced by spatial dot patterns.

In many intellectual tasks, imagery plays an important role. As Johnson (1987)

states, "Imagination is a pervasive structuring activity by means of which we achieve

coherent, patterned, unified representations. It is indispensable for our ability to make

sense of our experience, to find it meaningful" (p. 168). Kosslyn (1983) posited three

conceptual acts involved in imaging. They are generating an image, inspecting the

image (We will use the term re-presenting), and transforming the image. This view is

compatible with what Bishop (1983) calls visual processing. Generating the image is a

personal matter. Each person gives their own meaning to what they perceive. When a

child views a briefly presented pattern of dots, some will see it as a collection to be

counted and will construct a scan path for accomplishing the counting. Others will

construct familiar subpatterns and determine the number by combining the numbers

associated with them. Once an image has been constructed it does not remain in

consciousness but must be re-presented when needed. In re-presenting an image, a

person may view the image from a different perspective. The third aspect of imaging is
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transforming an image. In determining the number of dots in a spatial pattern, the

objects may be mentally rearranged to form a familiar pattern for which the number is

known. While it is impossible to directly observe the images a person constructs, the

manner in which they use them can be inferred from their actions in problematic

situations.

Spatial visualization involves more than mere perception of objects. It is not just a

process of taking a mental picture and retrieving the picture from memory (Wheatley and

Cobb, in press). As Lakoff (1987) states, "It is important to distinguish mental images

from perception. A perception is rich in detail since our eyes are constantly scanning"

(p. 444). "Different people, looking upon a situation, will notice different things. Our

experience of seeing may depend very much on what we know about what we are

looking at. And what we see is not necessarily what is there" (p. 129).

THE RESEARCH PLAN

There were two phases of this research. First, clinical interviews were conducted with

26 children ages 6-8 to explore their use of imagery in determining the number of dots

in a collection briefly displayed. Secondly, an eight month teaching experiment was

conducted with one child to investigate her use of spatial patterns on addition and

subtraction tasks.

The dot pattern tasks

Arrangements of dots drawn on 5"x 8" cards as shown in Figure 1 were briefly

shown to the child and he or she was asked "How many dots did you see?" and How

did you see them?" If the child did not respond or seemed

40 6 6 41 41 41 41 41 40 6 41 41 41 6
41 6 11 40 40 41 4141 6 41 41 41 6 41 6 41 41

41.41
40

a

Figure 1. Sample dot pattern tasks used in the clinical interview

to be stymied, the card was briefly shown again. In some cases children described the

arrangement and in other cases they drew a pattern to show what they had seen. The

children were asked to explain their method of obtaining the number reported.

In a second dot pattern task, five cards were laid in front of the child and a card

showing a pattern of dots was displayed for three seconds. The cards visible in front of
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the child had two, three, four, four, and five dots. After the card had been briefly shown

the child was asked to find two of her cards that had the same number of dots as the

one shown. The third dot pattern task was similar to the second except that a card

showing two dot patterns separated by a vertical bar was shown and the child was asked

to find one of her cards which had the same number of dots as on the card shown. The

number of dots on the cards visible ranged fromlix to eleven.

Steffe, et. al. (1983) base their assessment of children's counting types in large part

on responses to screened tasks, that is, tasks with some items not visible. If questions

are posed with objects in view, little is learned about the child's potential for reasoning

with numbers since she can just count each item by ones, touching them if necessary.

In a similar manner, questions following presentations of dot pattern cards can provide

information on which an explanation of the.child's activity can be constructed. Dot

patterns are useful because the child cannot work from visible arrangements of dots but

must use self-constructed images. Further, the setting provides an opportunity for

relating and transforming of images.

Dot pattern strategy types

Analysis of the video recordings of the clinical interviews with 26 children ages 6-8

resulted in the identification of six types of responses. They broadly fell into two

categories, counting (types one and two) or transforming and comparing images (types

three through six). These six types of responses are:

1. Counting while the card was being shown. Some children attempted to count the

dots one by one. Because the exposure time of the card was short, this strategy was

not effective; there was not time to count all the dots yet some children persisted with

this method. There was no evidence they had constructed an image of the dot pattern.

Once the card was no longer in view they stopped their counting activity even though
all dots had not been counted.

2. Constructs an image and counts the dots using a re-presentation of the image. After

the card had been shown, Sally pointed in the air as she counted the dots.

3. Constructs subpatterns. This strategy is illustrated by the child who reported, "I saw
three, three, and two - that's 3, 6, 7, 8."

4. Relates the pattern to a previous dot pattern. Some children determined the

number of dots on the card shown by comparing their image to an image of a previous

dot pattern. For example, Drew said, "That's the same as the other card. See, there

was two rows of five and two rows of three. That makes 16."
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5. Transforms an image. The child transformed the constructed image to a familiar

arrangement for which the number was known. Adam transformed his image of a four-

over-two pattern to a three-over-three pattern which he knew was six.

6. Constructs an image not shown for comparison. In this method the child

"completes" a pattern. For example, shown two rows of four and a row of three, the

child constructs an image of three rows of four and knows that is 12. Then determines

the number in the arrangement presented by taking one away from 12. Drew said,

"Eleven, "cause there was one missing."

The Teaching experiment

In order to investigate the use of dot patterns in number development, we selected

a single child for study. Tammy was selected because her number development was

below average for her age, she seemed to take tasks as problems, offered explanations

of her activity, and had potential for use of spatial patterns. An eight month teaching

experiment was conducted with that child. Clinical interviews were conducted in

September, January, and April. The teaching experiment sessions were video

recorded and held twice a week for one hour over a six month period. The tasks

presented in the sessions varied from addition and subtraction to spatial tasks such as

dot patterns, tangrams, drawing shapes seen briefly. Addition and subtraction tasks

were presented in many settings. For example, using countable objects, paper and

pencil computations, mental arithmetic, money problems, word problems, and games.

Analyses were done after each session in order to give meaning to her actions and to

design new tasks which would be problematic for her at the next meeting. However, in

each session, we felt free to modify the proposed tasks based on our interpretation of

her activity. Our goal was always to select tasks that would likely require a mental

reorganization, that is, tasks for which her methods would no longer work. This practice

allowed us to pose tasks which would provide information about her constructions.

At the time of the initial interview, Tammy was eight years ten months of age and in

the third grade. The initial clinical interview revealed that Tammy could solve missing

addend screened tasks (Steffe, et. al. , 1983) but had not internalized the number word

sequence. Thus when she counted she was "in the action" and could not reflect on

her counting activity. She did not spontaneously use thinking strategies. In

determining the number of objects in two collections, she made extensive use of well

developed finger patterns. To find 7 + 2, she extended seven fingers, five on one

hand and two on the other all in one motion, and then put up two fingers all at once and

recognized the nine finger pattern formed. For 6 + 5 she used her fingers to count on
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from six. Being "in the action" of counting, she would have to repeat this procedure if

asked the same question a few minutes later. When asked to add 17 + 6 she made 17

marks and 6 marks on a paper and counted them. At times she attempted to use a

vertical algorithm but became confused and abandoned the attempt. For Tammy, an

addition task was a signal to count, using finger patterns if possible. While she was slow

and showed little reflection on addition and subtraction tasks, she was able to

determine quickly the number of dots in a spatial pattern. On the dot pattern tasks, her

action exemplified type three (above) in which subpatterns were formed. For example,

she explained her method by saying, " You have two and two that's four. Then you have

three here and that's seven." While Tammy was quite good at determining the number

of dots when a pattern was presented briefly, she rarely related the pattern to a previous

pattern or transformed her image to a familiar one. Tammy could represent her self-

constructed images but rarely transformed them.

DISCUSSION

Throughout the teaching experiment, Tammy had a strong inclination to count in an

unreflective manner in determining the number in two collections. Her rare use of dot

patterns in finding sums may have resulted from her intention to count rather than use

images. In order to find sums by combining dot patterns, it would be necessary to

transform the re-presented images, i.,e., mentally rearrange the dots. We conjecture

that she had well developed static imagery but poorly developed dynamic imagery

(Piaget and Inhelder, 1971). For example, she had great difficulty with tasks which

required mental rotation of images.

During the first five sessions she began to solve addition problems with addends

greater than 10 by reusing her fingers but she had difficulty with subtraction problems.

During the fifth session we became aware of her difficulties in using a counting back

strategy. Thus in the next session we asked her to count back from 26 and found that

she could not do it. In attempting to count back she made errors and even paused 15

seconds between saying twenty-three and twenty-two. We also found that Tammy

could not count by two's. Even after several practice sessions, she counted "2, 4, 8, 9,

10." in counting 10 objects.

In order to investigate her use of dot patterns and number combinations, we played a

Domino Ten Game with Tammy in the eleventh session in which two dominoes could be

played end to end if the sum was ten (a double nine set was used) . The Domino game

was played for two and half hours over four sessions. In this setting Tammy

consistently used a counting on strategy to test combinations and showed no
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recognition of the number based on the dot patterns. Even when there was a seven

pattern showing she would count by ones to find how many. She did not combine dot

patterns to find the number of dots on two dominoes as she had done on the dot

pattern cards her intention was to count. Her play, although slow, was intelligent and

she rarely missed a combination. She was also aware of the play of others, frequently

commenting on strategy and possible moves of others.

We conjecture that with the dots on the dominoes visible, Tammy could

systematically use primitive counting to test combinations and had no inclination to

develop or use other methods. There was no recognition of combinations which made

ten, she relied entirely on a counting method. Although the setting was conducive for

use of dots patterns, and we knew she could use dot patterns, Tammy's context

precluded use of them. Because she was in the action of counting and did not reflect

on the counting activity, she did not reorganize her schemas and develop an efficient,

number pattern based method.

Several changes in Tammy's mathematical activity were observed during the teaching

experiment. On December 5, the fourteenth session, Tammy used a compensation

thinking strategy in solving 9 + 3 as a subproblem to a computation task. She wrote 10

and 2 and said twelve. In subsequent sessions she had many opportunities to use

thinking strategies but on only one other occasion was use of a thinking strategy

identified. Over the six months of the teaching experiment, there was a noticeable

decrease in the explicit use of finger patterns. On January 23 she solved 8 + 6 by

making a fist and looking at it. She obtained the answer in four seconds, most likely

using a curtailed counting on strategy. On the same day she was given 5 plus 3

followed by several other similar tasks and then asked 3 plus 5. Her response was, "

You already asked me that one!" This was considered as evidence that she was

reflecting on her actions.

CONCLUSION

In interpreting students' actions in number settings, it is important to recognize the

role played by context. It is possible that students may not succeed as well as they

might because they operate in a context which limits their progress. For certain tasks

Tammy operated in a counting context and performed less well than when she used

spatial patterns. Tammy's mathematical activity was context bound. Some settings

triggered a counting response and in other settings she would use dot patterns.

However, she lacked flexibility and rarely changed context to use alternative methods

which might be more effective. Perhaps if teachers use a variety of settings students
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will be more likely to develop flexible methods for thinking about numbers. Use of dot

patterns may encourage some students to develop powerful methods.
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SYMBOLIC REPRESENTATION
OF ADDITION AND SUBTRACTION WORD PROBLEMS:

NUMBER SENTENCE ERRORS

Harriett C. Bebout Junichl Ishida
University of Cincinnati University of Tsukuba

This paper presents a discussion of the typical number
sentence errors that occur when first-graders are asked to
symbolically represent addition and subtraction word
problems. Two instructional treat- ments are presented and
the persistence of certain types of errors are noted.

Several studies have documented the performance of children in

writing number sentences to symbolically represent various types of

addition and subtraction word problems alebout, in press; Carpenter,

Hiebert, & Moser, 1983; Carpenter, Moser, & Bebout, 1988; DeCorte &

Verschaffel, 1983; Feiyu & Shanghe, 1988; Ishida, 1988; Lindvall &

Ibarra, 1980; Moser & Carpenter, 1982). Children's success with

symbolic representations appears to vary according to the

correspondence between the structure of the word problem and the

number sentence formats that children know. For example, when asked

to write number sentences for simple word problems, i.e., Join,

separate, and combine addition problems, children are very

successful because the structures of these problems correspond to

the standard, or canonical (A + B = and A - B =0), sentence

forms that are familiar to children; when asked to write sentences

for more complex problem types, such as missing addend or compare

problems, children are less successful because the structures of

these problems do not correspond directly to the familiar canonical

forms. Many of these unsuccessful attempts, however, indicate

potentially successful number sentence forms.

For example, consider a typical missing addend problem:

Polly has 7 cookies.
Her brother gave her more cookies.
Then she had 11 cookies.
How many cookies did her brother give her?

Prior to instruction some children are successful in overcoming the

problem's additive structure and attending instead to the solution's

subtraction structure; they write canonical number sentences of the

form 11 - 7P=131. Other children appear to keep their focus on the

problem's additive structure and to ascertain the correct solution;

they represent this structure with sentences of the forms
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7 4 ii = Op or 7 4 4 = [M And yet another group appear to

extract the given numbers, to determine the operation, and to carry

out a solution bound to the Incorrect sentence; they write a

sentence of the form 7 + 11 = Ei . This latter sentence error

appears to be a persistent type that has been documented in later

assessments (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981).

Ishida (1988) categorized children's incorrect number sentences

into the following five error types: Tvoe A 7 + 11 = El: An

Inappropriate sentence with a correct solution; Tvoe a

7 + 4 = : An appropriate sentence with the wrong numeral

identified as the correct solution; Tvoe C 7 + 11 = : An

inappropriate sentence with an incorrect solution; Tvpe D: No

attempt to write a sentence; and Tvoe g: All other Incorrect

sentence errors.

This paper presents the types of number sentence errors written

by two groups of children who were given different instructional

treatments. One group was taught to write only canonical number

sentences that represented the basic number fact corresponding to

the solution (Ishida, 1988); the other group was taught to write

either canonical or noncanonical number sentences that represented

the structure of the problem (Bebout, in press). Although the

results of the treatments are not statistically comparable because

of treatment and evaluation differences (problem type, problem

order, problem inclusion, duration of instruction, and number

domains), the pattern of error types that appeared

postinstructionally indicated children's developing expertise in

symbolically representing word problems.

METHOD

Samples

Two populations of children were studied. Group J, the Japanese

children, consisted of 137 first-graders in four classrooms. Group

A, the American children, consisted of 46 first-graders in two

classrooms.

Instructional Treatments

Children in Group J received their regular curriculum over the

academic year. Briefly, this curriculum Included Instruction on

writing canonical forms for the following problem types: Join and
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combine addition, separate and compare, three element addition and

subtraction, and combine and substitution subtraction (Ishlda,

personal communication). Children In Group J were not shown

noncanonical forms; this is included In the second grade curriculum.

Children in Group A received a special 14 session instructional

treatment over a five week period during the spring of first-grade.

Briefly, this treatment included instruction on writing forms that

corresponded to the following problem types: Join and separate,

combine addition and subtraction, Join and separate change unknowns,

and Join and separate start unknowns (see Bebout, in press).

Children in Group A were shown both canonical and noncanonical

forms.

Instruments of Evaluation

The instruments of.evaluation were group word problem tests

administered before and after instruction. In these tests children

were asked to write a number sentence for and to solve several types

of addition and subtraction word problems. The problem types, the

order of administration, and the problem number domains differed for

the two groups: Group J children were given Join, separate, combine

addition, combine subtraction, compare, and missing addend problems

with low number domains; Group A children were given Join, separate,

combine addition, combine subtraction, missing addend, three other

change and start unknown problems, compare, and equalize problems

with high number domains. The intersection of types common to both

studies were the six problems used in the Group J study.

The incorrect forms of number sentences were categorized into

the five error types suggested by Ishida (1988): Tvoe A errors

included inappropriate sentences with correct solutions; Type B

errors included appropriate sentences with correct solutions, but

with the wrong numeral identified as the solution; Type C errors

Included inappropriate sentences with Incorrect solutions: Type D

errors included the lack of attempt to write a sentence; and Type E

errors included all other error types.

RESULTS

The success of children in both groups to symbolically

represent six types of word problems before and after instruction

are presented in Table 1. For the join, separate, and combine
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addition problems, most of the children in both groups were

successful In writing correct sentences after instruction, Their

performances on the three other problem types, the combine

subtraction, compare, and missing addend problems, were less

successful.

(insert Table 1)

Data pertaining to children's errors on the combine

subtraction, compare, and missing addend problems both before and

after instruction are displayed for Group J in Table 2 and for Group

A In Table 3. These error data are arranged according to

preinstructional error type on the missing addend problem and are

presented In levels. Children at Level 1 made no errors and wrote

correct canonical number sentences; children at Level 2 wrote

sentences with Type A or B errors; and children at Level 3 committed

Type C, D, or E errors.

(Insert Tables 2 & 3)

The Level 1 children in both groups were very successful in

writing sentences for all problem types after instruction. The Level

2 children in both groups had a lower number of Type C, D, and E

errors and also were"more successful after instruction.

The Level 3 children improved also but to a lesser extent than

then other levels. Their performances on the non- instructed problem

for each group exhibited a pattern, or progression, of improvement

from the most severe Types C, D, and E error types to those that are

very close to correct sentence forms, Types A and B. On the compare

problem, the errors of Group A children changed from predominently

Type C and D errors to a substantial number of Type A errors. On the

missing addend problem, the errors of the Group J children showed

this same pattern too, but with a larger number of Type B errors.

By better understanding and anticipating these types of errors,

instruction can planned that will help children at all levels to

symbolically represent word problems. A further discussion will be

provided during the presentation.
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Table 1
Number and Percent of Correct Preinetructional and Postinstructional
Number Sentences on Word Problem Types for Groups A and J

Word
Problem
Type

Group A
(n . 46)

Group J
(n . 137)

Pre Post Pre Post

Join 30 (2) 44 (4) 129 (4) 136 (1)
66.7% 97.8% 92.4% 99.3%

Separite 32 (3) 41 (5) 120 133 (2)
71.1% 91.1% 87.6% 97.1%

Combine 31 41 129 136 (2)
(addition) 68.9% 91.1% 94.2% 99.3%

Combine 10 35 (1) 68 (12) 112 (4)
(subtraction) 22.2% 77.8% 49.6% 81.8%

Compare 4 5 82 (1) 118
8.9% 11.1% 59.9% 86.1%

Missing Addend 3 39 (1) 20 70 (1)
6.7% 86.7% 14.6% 51.1 %

(The number in parentheses indicates the number of calculation errors
within the correct sentence total.)
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able 2
Umber and Percent of Prelnstructlonal and Postinstructional Number Sentence Errol
'ypes for Group J Children at Different Levels (n = 137)

Number Sentence Errors

ord
roblem
ype

Type A
pre post

Type B
pre post

Type C
pre post

Type D
pre post

Type E
pre post

ombine (subtraction)
a

Level 1 1 0 0 0 1 2 1 0 0 0

b
1%(d) 1% 2% 1%

Level 2 4 1 13 1 2 1 2 0 3 1

3% 1% 10% 1% 2% 1% 2% 2% 1%

Level 3 4 4 3 2 13 12 15 0 3 0
3% 3% 2% 2% 10% 9% 11% 2%

GMBACI

Level 1 0 0 0 0 2 0 0 0 0 0

2%

Level 2 6 2 4 0 3 1 1 0 1 0

4% 2% 3% 2% 1% 1% 1%

Level 3 6 2 0 2 14 10 13 0 2 0

isslna Addend

4% 2% 2% 10% 7% 10% 2%

Level 1 0 2 0 1 0 0 0 0 0 0

2% 1%

Level 2 13 3 32 12 0 5 0 0 0 0

10% 2% 23% 9% 4%

Level 3 0 7 0 9 31 22 31 0 0 0
5% 7% 23% 16% 23%

) for Level 1, n = 3; b) for Level 2, n = 12; c) for Level 3, n = 31
) to nearest whole percent
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able 3
umber and Percent of Preinstructlonai and PostinstructIonal Number Sentence Error

ypes for Group A Children at Different Levels (n = 46)

Number Sentence Errors

ord
roblem
ype

Type A
pre post

Type B
pre post

Type C
pre post

Type D
pre post

Type E
pre post

gmbiaft (subtraction)
a

Level 1 0 0 0 0 1 0 0 0 0 0

b

2%(d)

Level 2 1 1 1 0 4 1 2 1 0 0

c

2% 2% 2% 9% 2% 4% 2%

Level 3 0 3 0 1 18 3 6 0 2 2

7% 2% 39% 7% 13% 4% 4%

=AEI

Level 1 0 0 0 0 1 0 0 1 0 0

2% 2%

Level 2 2 3 3 2 2 3 4 0 0 1

4% 7% 7% 4% 4% 7% 9% 2%

Level 3 0 12 1 0 21 11 6 0 2 6

lissina Addend

26% 2% 46% 24% 13% 4% 13%

Level I 0 0 0 0 0 0 0 0 0 0

Level 2 2 1 10 0 0 1 0 0 0 0

4% 2% 22% 2%

Level 3 0 2 0 0 20 1 6 0 5 0

4% 44% 2% 13% 11%

0 for Level 1, n = 3; b) for Level 2, n = 12; c) for Level 3, n = 31

p to nearest whole percent
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GEOMETRY, MEASUREMENT, AND
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CASE STUDIES OF CHILDREN'S UNDERSTANDING OF THE
CONCEPT OF LENGTH AND ITS MEASURE

Bernard Heraud, Universite de Sherbrooke

This paper reports the initial results of a study aimed at
determining the understanding of the concept of length
among 9 year-old children. Various tasks have been
developed on the basis of a two-tier model o f
understanding. Regarding the first tier, results Indicate that
the logico-physical understanding of length is relatively well
achieved. On the other hand, at a second tier, t h e
understanding of the 'measure of length', the study reveals
many difficulties, especially those relating to the
understanding of the unit of measure and its representation
on a ruler.

The importance of the concept of measure in the school curriculum does not have to

be stressed. The learning of the concept of length is fundamental since it is the first step

that children undertake at the mathematical level in their acquisition of the more general

notion of the measure of magnitudes. These last few years, several researchers have

studied problems related to the understanding and the learning of the measurement of

length. Carpenter et at (1980) have noted that large numbers of 9 year-olds can fail some

tasks when the context of the situation is varied ever so slightly. This reveals a superficial

understanding of the basic concepts. According to Hart (1981), similar difficulties are still

found extensively among secondary school students, thus indicating their persistence.

Some researchers have dealt with the specific problems involved in the learning of this

concept. Hiebert (1984) has brought out some difficulties that first graders have in

understanding the relations between the choice of unit and the measure resulting from it.

Similarly, Bessot and Eberhard (1983) have examined the links that 7 and 8 year-olds can

establish between measure and the marks on a ruler.

The objective of the present investigation is to contribute to the study of these

problems. It aims to describe and classify the cognitive obstacles that children encounter

in their construction of the notion of length. The originality of this research is that it does

not simply aim at establishing a list of all the difficulties but rather, it attempts to look at

these in a conceptual framework enabling us to get a better grasp of the children's

construction processes. Such a conceptual framework was was established prior to the

present research (Heraud, 1989). It built on the Extended Model of Understanding

developed by Herscovics & Bergeron (1988). This model suggests an important

distinction between , on one hand, logico-physical understanding which deals with

physical objects and the spatio-physical transformations on these objects, and, on the

other hand, logico-mathematical understanding resulting from reflection on the
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procedures and actions pertaining to mathematical objects. For the topic at hand, it

enables us to distinguish three levels of understanding of the physical concept of length

and three components of understanding of the emerging mathematical concept: the

measure of length

The study we intend to present deals with the first phase of a larger project

concerning the clinical observations of the child's construction of the notion of length.

Using the above model, we have designed a sequence of tasks that characterize the

different levels and components of understanding.

UNDERSTANDING THE PHYSICAL CONCEPT OF LENGTH

Referring to the previously mentioned model, at the first tier of understanding, length

is considered as a physical magnitude prior to any numerical quantification. We can

distinguish here three levels: intuitive understanding that results from a form of

thinking based essentially on the visual perception of length, logico-physical

procedural understanding relates to the acquisition of logico-physical procedures

verifying intuition, and logico-physical abstraction which refers to the construction

of logico-physical invariants.

We have sought to determine the children's knowledge with respect to these three

levels of understanding. A test was developed and presented in the form of individual

interviews with 25 children from the same third grade in an urban neighborhood school

(average age 9 years and 1 month). On the basis of their school performance, these

children could be divided equally into 5 groups: strong (S), Strong-Average (SA),

Average (A), Average-Weak (AW), and Weak (W).

Intuitive and procedural understanding

To first assess intuitive and procedural understanding, the child was given a bunch of

six straws of nearly equal lengths, measuring between 5.5 cm to 7 cm, with an average

difference of 3 mm, and was asked to arrange these according to size. Our results show

that the large majority of the children we have tested (92%) have no difficulty with this

task, despite the fact that the lengths of the straws were very close to each other.

Children proceeded by using a comparative measure, that is, by comparing directly a

chosen straw with another one and then arranging them in the proper order. Only 2

subjects in this class were unable to handle this task (one W and one AW). It thus seems

that intuitive and procedural understanding of length, at the logico-physical level, is fairly

widely achieved by 9 year-olds.
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Log ico-physical abstraction

On the other hand, results are far less positive at the logico-physical level of

abstraction. We have used as criterion the child's perception of the invariance of the

length of an object with respect to various figural transformations, prompted in this by

some of the well known tasks developed by Piaget and his colleagues (1948/1973). At

first, we assessed the invariance with respect to orientation: two identical straws were

positioned perpendicular to each other. The child had to decide whether or not they

were the same length. Moreover, assuming that the straws were licorice, they had to

indicate whether or not there would be the same 'amount to eat'. To assess the invariance

with respect to fragmentation, two identical straws were chosen and one of these was

then cut in two and placed under and parallel to the other one. The same questions

introduced earlier were repeated. Finally, the two aspects, orientation and

fragmentation, were considered jointly, one of the two straws was cut into 5 parts and

laid out in a non-rectilineal 'path'.

The results obtained on these three tasks show that a non negligible proportion of

children (20%) encounter real problems at this level. Remarkably, the same five subjects

had difficulties with each of the three problems, thus indicating the persistence of their

perception regarding these three types of invariance. For each of these children (with

one exception), the error in judging the question of length was confirmed by the same

error on the question of licorice, which indicates that the mistakes were conceptual and

not due to some lack of understanding of the wording.

For those who succeeded on the three tasks, some facts are worth bringing out. For

instance, with respect to the change in orientation, some of them took care to distinguish

the terms that were used, stating that one was higher than the other and the other one

was wider, but that it amounted to the same thing since it was possible to place one in the

position of the other; this clearly indicated an awareness of reversibility. A similar note

applies to the fragmentation in two parts. Nearly half the children claimed that the two

straws were of the same length, for all one had to do was glue together the two pieces to

get back the initial one. However, it is of interest to note that several children stated

spontaneously that the two straws, the complete one and the cut up one, were not of the

same length, which might have been construed as an error had they not specified later on

that they were taking into account the space separating the two cut up pieces; this

indicated that, contrary to initial appearances, the problem was indeed understood. The

results obtained on the third task (orientation and fragmentation) confirm the preceding

data, with several children indicating that it may look longer with the five cut up pieces but

that it amounts to the same if one does not take into account the space between them.
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One child even mentioned that in the case of the licorice he was quite sure that it was the

same length but that he neveretheless preferred the one with "the little pieces".

Regarding logico-physical abstraction, one can conclude that it seems to be achieved

by a large majority of 9 year-olds. However, it is important to dissociate the understanding

of terminology from that of the concept itself for the word 'length' can be confused with

those of 'width' and 'height'.

UNDERSTANDING THE CONCEPT OF THE MEASURE OF LENGTH

Referring to the Herscovics & Bergeron model, we can identify a second tier of

understanding. We then no longer view length as a physical magnitude, but rather as a

quantifiable magnitude that can be expressed numerically, that is, from the perspective of

measure. This tier consists in three components: logico- mathematical procedural

understanding (the acquisition of logico-mathematical procedures) as well as loglco-

mathematical abstraction (the construction of invariants), and formalization which

refers, among other things, to the rational use of certain forms of mathematical

symbolization.

In order to assess the extent of the children's understanding of the measure of

length concept, we selected 11 children who had succeeded in the previous tasks and

who represented 4 different levels of mathematical ability ranging from Strong to Average-

Weak. We opted for semi-standardized interviews using a list of questions prepared in

advance while leaving the possibility for the investigator to change the wording in case a

question had not been understood. These interviews were video-recorded for later

analysis.

Log [co-mathematical procedural understanding

The objective here is to determine the extent to which the child uses the notion of

unit, notion that constitutes the core of any measuring operation. To assess this we have

developed two tasks that cover two important aspects of this concept.

The choice of identical units

Children were presented with two "trains" consisting of little rods, each one having a

total length of 26 cm but including a different number of rods (5 for the first one and 8 for

the second one). The two trains were separated and slightly offset, this in order to

prevent any comparative measure. Subjects were then asked to compare the lengths of

the trains without moving them closer together. We wanted to determine if they were not

confusing the notion of length with that of the number of units and if they might feel the

need for a common unit of reference.
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Spontaneously, 4 of the 11 children indicated that the train with the most rods was

the longest , which shows that they were focusing on the number of units without taking

their size into account. Five children indicated that they did perceive the important role of

the size of the units when they expressed that even if there were more "cars" in the

second train, it didn't mean that it was longer than the first since there were "little cars in

the second and large ones in the first". Only one child used a purely visual comparison

without taking into account the number of units.

On the other hand, even if the subjects were aware that it was not easy to compare

lengths on the basis of different units, only one of them thought about using a same

reference unit in order to compare the two trains. This indicates that the choice of identical

units does not appear as an evident need to these children.

Jteration of the unit

The suggested task consisted in finding the length of a path drawn on a sheet by

using a paper clip. This object was chosen in accordance with a similar task appearing in

the second NAEP in which only about half the 9 year-olds could provide a correct answer

(J.Hiebert, 1981) .

With the children in our test, the main problem was carrying forward the measuring

unit with more or less precision. Indeed, it is not easy for a child to put a mark at the exact

end of the paper clip and to start again with precision from the same spot. This explains

why only 3 out of the 11 children provided a correct response (7 paper clips). The others,

who all had some problem in moving the clip forward, gave answers that were

approximations such as "7 and a little bit". One single child had serious problems since he

was using his finger to mark off the carrying forward point and this gave him 6 as an

answer.

Log Icomathematical abstraction

The objective here is to determine if children are aware of the Invariance of the

measure of length with respect to various figural transformations; it is also to see to what

extent they perceive the links between length, considered as an invariant physical entity,

and its measure, which can vary according to the unit of measure selected. Two different

tasks were thus prepared.

Comparison of measures with respect to disolacement

With a first task, we wanted to determine the extent to which children had remained

dependent on the figural context, with or without the presence of pre-determined units.

Thus, initially, the pupils were given two strips of different length (12 cm and 9 cm),

slightly offset with respect to each other (see fig.1), they had to show what had to be
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added to the shorter one (by cutting up a strip of paper) to make it as long as the other

one.

Figure 1

Following this, a similar task was suggested, consisting of two horizontal lines (10 cm

and 8 cm) drawn on a sheet, but this time with some marks indicating units (of 2 cm) on

each of the straight lines (see fig.2).

Figure 2

Results indicate that 5 of the 11 children succeeded on the two tasks, by basing

themselves on visual estimation in the first instance, and on the number of units in the

second one. For the other 6, it is interesting to note that the first task was generally

successful while for the second one, several pupils remained at a perception level of the

unit. For three of them, only one single unit was added but without taking into account the

length of this unit. Also noteworthy is the erroneous procedure consisting of adding to

the lower line the part on the left that extends beyond the first line; it was used

systematically by two subjects in each of the tasks.

The variability of measure with respect to the size of the unit

The aim here was to determine if children could recognize and use the simple ratios

existing between two types of units in order to deduce the corresponding measures. The

following problem was presented: a 30 cm segment was measured by the children with 6

cm rods and they were then asked to predict the result if smaller rods were to be used ( 2

cm and then 3 cm).

Results are rather positive. Among the 11 children, 8 of them used ratios; 7 did find

the correct ratios with 2 of them (classed as Strong) making a direct transfer for the

corresponding measure (of the type 3 x 5 and 2 x 5); the other 5 found the answer by

repeated addition and this can be attributed to their lack of familiarity with multiplication.

Formalization

One of the main aspects of this last component of understanding is the appropriate

use of conventional measuring units. When linked with utilization of a ruler, this

formalizes the notions acquired previously. Although we knew that the selected children
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did not, in all likelyhood, possess all the preliminary notions needed for a correct utilization

of a ruler, nevertheless, we wanted to take a closer look at the major problems that they

faced in this context. To achieve this, the children were to use the rulers (in centimeters)

shown in Figure 3.

II I III IIII I I I I !III I 10
5 10 15 20

I 1 I I I I I I I I I I I I

0 10

Figure 3

The use of the first ruler involved added difficulties caused by the fact that the mark

for 0 was not shown and that the last extremity exceeded 20 by one unit. For the second

ruler, the 0 mark was somewhat off the left extremity of the ruler. With the first ruler,

children had to measure a 24 cm segment, thus longer than the ruler, which required

moving it forward (case 1), and also a 14 cm segment (case 2). With the second ruler they

had to measure a 19 cm segment (case 3) and another one 13 cm long (case 4).

The best results were obviously obtained in case 2 since all that was needed was a

direct reading. Thus 8 of the 11 children found 14 as a result. Regarding the 3 pupils who

did not succeed, it is noteworthy that they found 15 as an answer for they positioned the

1 mark at the end of the segment and not the 0 mark which was not visible.

With regards to case 4 for which a direct reading was also sufficient, the results were

clearly poorer, since 5 children who were successful in case 2 now were failing. They were

positioning the end of the ruler and not the 0 mark accross from the end of the segment

they were measuring. This could be viewed as lack of attention but it is doubtful since the

same mistake was found again in case 3 where the same problem occurs when the ruler is

moved forward. Moreover, it should be pointed out that the three children who failed case

2 succeeded "logically" in case 4 since they were measuring from the first mark on the

ruler.

Regarding cases 1 and 3, in which the ruler had to be moved forward, these created

many problems for the children. Only one single pupil did solve correctly both cases. In

case 1, not a single child wanted to mark off 20, but 5 of them indicated 20 when in fact it

was at 21 cm, and 2 others who, after moving forward the ruler found that the end of the

segment was in front of the 5 mark, stated that it measured 25 (cm). These two facts show

that children tend to focus on the numbering appearing on the ruler without looking for its
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meaning. Moreover, 2 children did not move forward the ruler relying instead on a simple

estimation of the part remaining to be measured.

CONCLUSION

The results of our investigation indicate that intuitive and procedural understanding of

the logico-physical concept of length is well mastered by most 9 year-old children.

However, logico-physical abstraction is far from acquired, implying that its construction

occurs somewhat later. At the second tier of understanding, the difficulties are more

evident, especially those concerning the understanding of unit. Thus, in terms of

procedural understanding, some children think of measure in terms of the number of

units, regardless of the unit size. Regarding logico-mathematical abstraction, the

necessity of keeping a unit of length constant is not always apprehended. Finally, in terms

of formalization, important difficulties are often encountered regarding the proper use of a

ruler, such as associating marks on a ruler with units.
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RELATIONSHIP BETWEEN SPATIAL ABILITY AND
MATHEMATICS KNOWLEDGE

Dawn L Brown and Grayson H. Wheatley
Florida State University

In this study differences in mathematical knowledge between
fifth grade children of high and low spatial ability were
examined. The Wheatley Spatial Ability Test (WSAT) was
administered to fifth grade students (N=54). Based on the
results of this test, six girls were chosen for clinical interviews
because they had either high or low spatial scores. All
Interviews were video recorded for transcription and analysis.
Mathematical knowledge was assessed using tasks such as
conservation of area, linear measure, concept of one fourth,
proportional reasoning, multiplicative reasoning, and solving a
nonroutine problem. The results of the spatial tasks closely
paralleled those of the WSAT. Analysis of mathematical tasks
revealed that while the low spatial girls did well in school
mathematics, their knowledge was instrumental. The high
spatial girls mathematics, however, was more relational.

There is a long history of interest in the relationship between spatial ability and

mathematical knowledge (Bishop, 1980, 1989; Clements, 1982). The results of this

research, however, are by no means clear. Guay and McDaniel (1977), for instance, using

tasks of simple and complex spatial abilities, found a positive relationship between

mathematics achievement and spatial abilities in elementary school children. In studies

with older (six through twelfth grade) children, Fennema and Sherman (1977, 1978)

found significant correlations between spatial visualization and all levels of mathematics

achievement. In a study of engineering students, Lean and Clements (1981) found that

more visual students performed more poorly on mathematical tests that students who

processed information by verbal-logical means.

Much contradictory evidence is the result of differing ways of assessing spatial ability

and mathematical knowledge. In this paper we shall accept the position of Kosslyn

(1983 ), who identified three distinct conceptual acts involved in imaging: Generating an

image, re-presenting an image and transforming an image. The generation of an image is

personal. Each person gives meaning to what he or she perceives. Once an image has

been constructed it does not remain in consciousness but may be re-presented when

needed. Upon re-presentation, this image can be transformed. By accepting this

definition, we have eliminated static imagery from consideration and will examine only

examples of dynamic imagery (Piaget and inhelder, 1971).
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There is little reason to expect spatial reasoning to be related to instrumental

mathematics. Relational mathematics (Skemp, 1987), however, because it has been

constructed meaningfully by the child, may be inherently spatial. The purpose of this

experiment was to examine differences in mathematical knowledge between children with

high and low spatial ability.

METHODS
Selection of subjects. The Wheatley Spatial Ability Test (Wheatley, 1978) was

administered to two classes of fifth grade students in a local elementary school. This test

is a 100-item pencil and paper test which was administered to all students in a class

simultaneously. In this test, students are given a sample figure and must then decide if

five congruent figures may be matched by rotation of the sample figure.

In order to discourage students from using analytical instead of spatial methods, an 8-

minute time limit was imposed. Students' test scores were computed using the formula:

number correct - 1/2 (number incorrect)

A perfect score was 100. Since responses on the test were dichotomous, a student

could be expected to obtain a score of 25 by chance alone.

In all, the test was administered to 54 students. Scores ranged from almost perfect

(98.5) to well below chance (-6.5). This wide range of scores prompted questions about

differences in mathematical knowledge between students with high and low spatial

scores.

Based on an analysis of the spatial test results, six children with extreme scores

(highest 10% and lowest 10%), were selected for further study. Because of differences

in the mean scores between boys and girls, and the underrepresentation of boys in the

extreme groups, this study was restricted to girls. Of the six girls chosen, three had the

highest test scores and three scored near or below chance.

Procedures. After selection, the six girls were given a series of individual clinical

interviews to further explore their spatial reasoning, cognitive level, and mathematical

knowledge. The clinical interview was chosen as the research technique because of its

potential for revealing the nature of children's spatial and arithmetic reasoning in a way not

possible with standard format tests. All interviews were video recorded for later

transcription and analysis.

Tasks used to assess spatial ability and mathematical knowledge. Several tasks with

concrete materials were used to assess arithmetic knowledge. In a test of multiplication

understanding, students were initially given 36 multilink cubes and asked to make a

rectangular region. They were then asked about the relationship between the
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dimensions of the rectangle, the number of cubes in the rectangle, and their relation to a

multiplication problem. They were then asked to make rectangular regions of different

dimensions with the same number of cubes. Finally, if they were successful with small

numbers of cubes, they were given 91 cubes and asked to construct a rectangular region

with them. In a test of division knowledge, students were given 36 unifix cubes ans asked

to share them fairly among four people. Students were also given one nonroutine

problem to solve (Steffe, 1988). They were first given 27 unifix cubes and asked how

many piles of three could be made. The interviewer then asked the question, "Suppose I

gave you some more cubes, so that you had 36 in all. How many piles of three could you

make?"

Students were also given three tasks of cognitive development. As a test of

proportional reasoning, students were given a modification of the paper clip problem

(Karp lus, Karp lus, & Wollman, 1974). The test of conservation of area was that used by

Piaget, Inhelder, and Szeminska (1960). In a final test (Flake, 1978), the students were

given three square pieces of paper and asked to fold each into four equal parts in a

different way and color one part of each; having done done this, they were asked if the

parts are the same size or different and why.

Two additional tasks of spatial ability were used, one involved the use of concrete

materials (Davidson and Willcutt, 1983) and the other, a computer program, "Transform"

(Flake, McClintock and Turner, in press). In the concrete materials task, the subjects were

presented with two sets of grids upon which a Cuisenaire rod pattern could be imposed.

They were asked if the patterns were flipped, turned (90 or 180 ) or were different. The

subjects had access to two sets of rods, so they could use a number of strategies to solve

the problem. In the computer program "Transform", two shapes were presented on a

video screen. The students' task was to decide if the shapes could be matched using the

available transformations to move one to cover the other. The transformations available to

the students were: slide, turn, flip and dilate.

RESULTS

Tests of mathematical knowledge. The most striking differences between the high and

low spatial girls was revealed by the multiplication task. Although all the low spatial girls

knew their multiplication facts, their performance on the rectangle task revealed some

striking deficits. All used rather primitive, trial and error, methods of forming the rectangle.

One student, Laura, was unable to form any rectangle with 36 cubes, after starting

several open rectangles and stating that she does not have enough cubes to make one,

she finally was able to construct a 7x5 rectangle with 35 cubes, but she called it a 7x4.

When asked about the facts 7x4 and 7x5, she knew the correct answers, but saw no
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relationship between the answers and the rectangle she had just constructed. Kimberly,

another low spatial girl, performed similarly in many ways. She was able to form a 6x6

rectangle, but called it a 6x4x16. Again, when quizzed about facts, she gave the correct

answer, but saw no relationship to the rectangle problem. The third low spatial girt Helen,

correctly identified her rectangle and realized that the number of cubes was the product

of the sides. She thought that there was only one possible rectangle which could be

made with thirty-six cubes.

In contrast, the high spatial girls all went about the task quite systematically. Two

of them made multiple rectangles easily with the thirty-six cubes, correctly identified the

dimensions, and understood their relationship to multiplication. Karen enjoyed the

activity, particularly constructing a 2 x18. One of these girls, Amy, did not know her

multiplication facts, but had developed her own strategies for determining products that

she did not know.

In the division tasks, two of the low spatial students made errors when sharing fairly.

Helen counted only one pile and miscounted. Laura, however, counted all four piles

obtaining the result nine, nine, eight, and ten. She saw no problem with this answer. In

the nonroutine problem, all the girls were able to get nine piles of three. Laura, at first,

guessed 21, but when prompted, made the piles and counted. In the next part of the

task, the high spatial students were able to verbalize a logical solution to the problem.

The low spatial girls were not able to verbalize a method, even though one of them

obtained the correct answer.

These tasks also offered insight into the girls counting strategies. The low spatial girls

tended to count cubes singly by pointing at each one. The high spatial girls were much

more likely to count by two's or three's. At one point, Karen was given three ten-cube

chunks and a six-cube chunk. She counted the six-cube rod and one ten-cube rod by

two's, then compared the height of all the ten-cube chunks to make sure they were the

same and said, "36".

Tests of cognitive level. None of the students were successful at applying formal

proportional reasoning to the Mr. Short - Mr. Tall problem. Of the high spatial girls, Trffany

tried to use a visual estimate, while Karen used addition. None of the low spatial girls,

however, thought the problem was solvable. The results of the conservation of area task

were less marked. Only two of the girls, one high and one low, gave conservation

responses. Another high spatial girl, however, responded in a unique way which could

not be considered indicative of either.

In the concept of one-fourth task, none of the low spatial girls were able to find

more than two ways to fold the squares into fourths, and only one was able to see that the
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area of the regions was equal. The other two very confidently picked a region which was

larger. In contrast, all the high spatial girls were able to find three ways to fold the paper,

even though they required some experimentation to do so. Two of them also recognized

the equivalence of the regions.

Spatial tasks. The results of two spatial tasks closely paralleled the result of the WSAT. All

three of the high spatial girls were able to solve the Cuisenaire rod problems without the

use of concrete materials, while none of the low spatial girls could. One low spatial girl,

Kimberly, gave incorrect answers even after she had used the rods to construct the

patterns. In their performance on the computer program, all the girls required some time

to learn the mechanics of the program. After this initial learning, however, two distinct

strategies developed. The high spatial girls performed the appropriate transformations on

the shape and then slid it to match, soon became very efficient and able to finish in a

short period of time. In contrast, the low spatial girls slid the shape first and then tried to

match it with other transformations. They never appeared to adopt on algorithm, but tried

things at random, often repeatedly, without success. As a result, they took much longer

to complete the task. One girl, Laura, was never able to match the shapes successfully.

DISCUSSION

The results of this experiment indicate that spatial ability as measured by the WSAT is a

good predictor of mathematical knowledge. One of the low spatial girls (Kimberly) had a

very high I.Q. and performed well in school mathematics, but her performance on the

tasks of meaningful mathematics, was much like the performance of the other low spatial

girls. In contrast, one of the high spatial girls was performing rather poorly in school

mathematics, but had an excellent grasp of mathematical ideas and could find creative

solutions to problems.

The low spatial girls performance on instrumental tasks was above or near average,

which is not surprising since there is little reason to believe that spatial reasoning is

related to instrumental mathematics understanding. The learning of rules does not

require the construction, re-presentation or transformation of any images. Relational

understanding, however, would seem to require at least the construction and re-

presentation of images, and in most cases, transformation of images. Consider, for

example, the multiplication tasks with multilink cubes. In order for the students to easily

build a rectangular region, they had to have an image of a rectangular region. The high

spatial girls' approach was quite systematic, suggesting they were working from an image,

while the low spatial girls seemed to work at random until they found a pattern which fit the

definition of a rectangle. Likewise, the task used by Steffe (1988) is much more easily

accomplished if students are able to visualize piles of three in 27 and 36. In constructing
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any mathematical relationship, whether it is the inverse relationship between multiplication

and division, or a geometric one such as in the golden ratio, perhaps some form of

imagery is involved.
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REFLECTION , POINT SYMMETRY AND LOGO

Elisabeth GALLOU-DUMIEL
Universite Joseph FOURIER

Reflection and point symmetry are transformations
taught in the secondary shcool in France (pupils 11
- 15 years old) which both involve a problem of
orientation. This research has the purpose of
making the properties related to orientation
apparent for the pupils in the learning of
reflection and point symmetry. For this we
undertook the construction of sequences in a LOGO
environment where pupils are induced to determine
the reflection or the symmetry of an angle.

LENIRODUCTION.PROBLEMATICAL CONTEXT.

Reflection and point symmetry are two transformations which are
studied at school (first and second year of secondary school in France) for
which it is useful to define the image of an angle. These two transformations
on a plane are in fact restrictions to a plane of corresponding spatial
transformations but have not the same effect on orientation as these spatial
transformations. They, also, correspond to phenomena in every day life, the
mirror reflection for the reflection, the beam of rays of light converging on
a point and then separating for the point symmetry. It seems necessary that
in teaching these two transformations the .problems of orientation should be
taken into account. For this we choose to give to the pupils tales in which
they will be obliged to determine the image of an angle.

We have therefore produced a teaching programme on reflection and
another on point symmetry using the LOGO language on a micro computer:
LOGO with the following restrictive list of primitives: FD, BK, RT, LT, ORIGINE
and commands necessary to erase lines comprises a microworld in which in
order to determine the symmetry of a figure made up of segments, the pupils
have to determine the symmetry of an angle by expressing its measure and
its orientation. Generally in classrooms, rules and compasses are the only

essential instruments available for geometry. The only instrument related to
angles is the protractor- seldom used or mastered by the pupils and which in
any case does not take orientation into account (1985 LABORDE).

The choosen microworld makes it possible for angles to be taken into
account without formalisation. In the first and second years of secondary
school under consideration here, all formalisation concerning angles was

previously out of the question. In addition the microworld makes the pupil
draw the symmetries of the figures thus producing the contour without
calculating each vertex. This encourages a global vision of the figure and its
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symmetrical aspect (1987 GALLOU-DUMIEL).

II.STUDY OF THE COMPUTER ENVIRONMENT

1) Comparison benven the ways of drawing in the two

environments under considerations.

The turtle on the screen has the same role as the point of the pencil on
the paper. However there are two major differences: firstly the turtle

indicates the direction and the orientation while a pencil does not and

secondly in the computer environment there is not a direct access to all the
points of the sheet.

2) Ways of drawing in the computer microworld.
The pupils do not have the means in terms of knowledge and

consequently of "procedures" to find the image of a point under certains
transformations by calculating its coordinates.

A "procedure" consisting of drawing all the images of the vertices of the
figure and joining them is very easy to use in a pencil / paper environment
because there is a direct access to all points of the drawing sheet. This

"procedure" is not economical in the choosen computer environment, on
account of the limitations due to this environment: it would be constantly
necessary to move the turtle back to the vertices of the given figure. The
pupils in the computer microworld, are induced to use the following

"procedure" to draw a polygon : they put the turtle in a vertex, make it turn
in advance to the direction and the sense of a side, make it move forward a
length equal to that of the side, turn it again to put it on the direction of next
side, and so on ... In the choosen environment, on the screen, the triangle
"turtle" represents both, a point, a direction and an orientation (1981,

ROUCHIER). Not only are the pupils required to draw a continuous line but
they also must fully explain the properties related to the orientation of

angles. There is a two-fold intermediary. That of a repertory of actions
expressed in a language and that of the computer environment. Significant

effects can be expected from this two-fold intermediary.
III.EXPERIMENTS

1)Variables of the tasks and choice of the figures.

We decided to choose for the pupils tasks of construction of symmetries
of different figures. To choose the figures we first study the variables they

are the characteristics of the figures, a modification of which may involve
the pupils changing their way for drawing the symmetry of a figure.

If, for example, the centre of the symmetry and the turtle are both

positioned on a vertex of the given figure, pupils will always begin the
construction of the symmetry of the figure by making the turtle advance in
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the direction of a side closed to this vertex and in the opposite sens.

If the centre of the symmetry is outside of the figure it is possible that
pupils may draw sides of the symmetry of the figure which are not parallel to
the corresponding sides on the given figure and it is also possible they draw
them parallel and in the same sense of the sides of the given figure, realising
a reflection instead of a point symmetry.

If the centre of the symmetry is inside the figure, pupils sometimes use
"procedures" related to a "conception" (1988 GALLOU-DUMIEL) in which the
given figure and the image cannot be intersected.

For example one "conception" is that the difference of orientation
between reflection and point symmetry does not exist. Another is that the

symmetry of a figure cannot be intersected with the given figure.
We can also see the coexistence of several "conceptions" in the mind of

pupils. Once the list of variables was drawn up we chose the figures in the
following way: for the first figure, all "procedures" give an exact result, for

the later figures choices of the values of the variables are successively made

so that alnost all possible combinations appear. The strategy to favour the use
of "procedures" which conduce to false result: the pupils will have to modify
their "procedures" and their "conceptions" in realizing other tries with the
same figures.

2)Experiments
Each of the sequences was tried out in two classes. Pupils have to make

a new try in case of false result and this obliges them to change their
strategies and conduces to an evolution of their conceptions. Exercices and
corrections are put in the computer in langage LOGO. Similar sequences were
tried out in two other classes in a paper-pencil environment. Concluding
tests in a paper/pencil environment were administrated in all the classes.

IV. EVALUATION

The comparison between the pupils carrying out the sequences in the

computer environment and in the paper/pencil one shows both a different

number of errors and different types of error. If we take different types of
error first for the reflection in a paper /pencil environment there is an

important error, that we call error of indefferenciation between the axes of
reflection and the figure. For the given figure where D is the axis of

reflection

30
10 D

the error of indifferentiation corresponds to three different drawings:
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n 30
10

30

fig 1

30
10
10

30

30

fig 2 fig 3

10

10

When pupils produce the third drawing (fig 3) they both use the
"conception" in which axis of the reflection is a part of the figure and the
"conception" in which reflection is not differentiated from translation.

The error of indi fferentiat ion does not exist in the computer
environment. The errors for the given figure

are:

10

30 30
10 10

40 30

fig 4 fig 5

1-1 30
10

n 40

fig 6

None of them correspond to the "conception" in which axis of reflection is a

part of the figure because the axis is not reproducted on the image. The three
drawnings correspond with the "conception" in which the given figure and

the image one cannot be intersected. We are sure that in the second

drawning (fig 5) there is not the "conception" in which the reflection is not
differentiated from translation because the image of the square is not a

square. The third drawing (fig 6) can correspond to the conception in which
the reflection is not differentiated from translation because the drawing is

similar with the one which has be done for a previous figure:

n
and the axis of reflection is not taken into account.

We have similar errors for point symmetry with CARREF :

The errors in paper-pencil environment are:

'9 tr. P'"
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error 1 error 2 error 3

In the choosen computer environment pupils only do errors 2 and 3.
For the errors of orientation we make the following observations.
For CARREB which is the second figure of the sequence on reflection the
following error is done by 80% of pupils in all the environments:

7
z

For MAISONF witch is the nineth figure of sequence on point symmetry the

following error is done by 25% of pupils in the computer environment and

40% in paper-pencil environment:

We see that for MAISONF there are less pupils who make the error than for

CARREB.

It indicates that a learning took place before doing MAISONF for the pupils

and it shows us the difference between learning of the considereted notion
in computer environment and in paper-pencil environment. As for us the

different number of errors is concerned, it was found that errors linked to

orientation are similar at the beginning of the session but they decrease

more rapidly in the microcomputer

one. One of the classes carried out

computer environment after having

previous year. At the begining of

environment

the session
done the

the session

proportion of errors. For the final tests the pupils
computer environment have a higher success rate

the paper/pencil environment and especially,

precision and exactness.
The difference between the two groups of pupils is also noticeable in

their recognition of the presence or absence of the axis of the reflection.

This was done better in the group who worked in the micro - computer

environment.

than in the paper/pencil

on point symmetry in the

session on reflection the

there was a much lower
who worked in the micro -
then those who worked in
they worked with more
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Similar results are found in the case of the centre of the symmetry but
the difference is slightly less noticeable.

These results show that the two sequences in the computer
environment develop the following capacities:

1) the global vision of the figures and their symmetrical aspect
2) the differentiation between given figure / element of symmetry and

the symmetry of the figure.

The comparative study of the "procedures" (1988 GALLOU-DUMIEL) used
by the pupils during sessions, allows us to understand something of the
learning "procedure" and some of the causes of error. In this comparative
study the computer environment using LOGO is a didactic tool.

V . CONCLUSION

The drawing "procedure" required by the computer environment using
a restricted list of LOGO instructions would appear to be a tool for teaching
those aspects of geometry in which the notions of angles and orientation
play an important role. This has been found to be fruitful in teaching
reflection and point symmetry. This type of study should be extended to other
fields of geometry teaching.
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STORY EDITING AND DIAGNOSIS OF GEOMETRY UNDERSTANDING

George W. Bright
University of Houston

This study Investigated the effects of debriefing on
performance at editing a story about squares to a story
about either circles or equilateral triangles. Nineteen
teachers participated; 10 did circle editing before
debriefing and triangle editing after, while 9 did the
reverse. More correct changes were made (a) after
debriefing than before and (b) for circle editing than
triangle editing. More analysis is needed to determine if
errors reflect deep misconceptions or superficial
difficulty with terminology.

A series of studies has been designed to investigate story editing as a tool for

diagnosing understanding of geometry concepts among preservice and inservice

teachers. Both mathematically incorrect explicit changes and failures to change

wording that leave incorrect concepts in the story have been coded and analyzed.

In an earlier study (Bright, 1988) preservice and inservice teachers first

individually edited a story about a family of squares to a story about equilateral

triangles and then reedited the same story in groups of two or three. In both

individual and group settings, superficial changes were made more consistently

than substantive changes. Group editing produced more changes than individual

editing, though the subjects were also more experienced during the group

exercise. Some changes were not made in the stories that should have been; for

example, references to "diagonals" were left in, even though triangles do not have

diagonals. This study attempted to determine if experience at editing, along with

feedback and discussion on the types of changes that needed to be made, might help

focus attention on substantive content rather than surface features.

METHOD

The story is shown below; changes had to be written in by hand.

A Really Square Tale

Once upon a time there was a family of squares: Sam Square, Sara

Square, Jimmy Square, and Janey Square. They lived in a condominium
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complex named Square One. Sam had four sides and very sharp corners.

His wife Sara had four angles and very straight sides. Their diagonals

met in the middle, a fact not unusual for squares. Their children,

Jimmy and Janey, sometimes tilted to the left, so they were confused

with the children of the Diamond family.

One day in January it snowed, and the hill outside the Square's

condo became very slick. Jimmy and Janey wanted to go out and play

with their sled, but Sara was afraid they would get hurt. After all,

squares don't roll down hills very easily. "You're so square, Mom II"

whined Jimmy. After much begging and pleading, however, Jimmy and

Janey were allowed to go out and slide down the hill.

On the fourth trip, Jimmy fell off and broke one of his diagonals in

two, right at the mid-point. Janey got out the glue and tried to patch

him up, but she succeeded only in breaking his other diagonal, half-way

between the mid-point and a vertex. Sam packed Jimmy up in a box,

and mailed him to the Square Repair Shop.

They didn't hear from him again for four weeks and four days. By

that time he had lost a lot of weight; in fact, one of his sides had fallen

off, along with the two attached angles, and he was beginning to look like

a triangle. Sara quickly cooked up his favorite meal - burger squares;

and with a lot of tender loving care, he returned to his true shape: four

sides of equal length, four right angles, sharp corners (after his

father), and straight sides (after his mother).

The changes of primary interest were name-of-figure changes (e.g., "a family

of squares"), property changes (e.g., number of sides, relationships between

diagonals), other mathematical changes (e.g., rotation of a square makes is look

like a diamond), and consistency changes (e.g., last names).

Subjects
One class (N . 19) of teachers in a course on diagnosis participated. One half

of the class (N.10) was given 15 minutes to edit the story. individually from

squares to equilateral triangles. The stories were collected and subjects were

debriefed. Then subjects were asked to reedit the story individually from
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squares to circles. These stories were collected and subjects were dismissed.

The other half of the class (N=9) edited the story from squares to circles, were

debriefed, and then edited the story from squares to equilateral triangles.

Procedures

At the beginning of the period, students were asked to participate voluntarily

in a study designed to try out a method for finding out what students know about

geometry. Students were told that they might find this technique useful later in

their own classes. The subjects were split randomly into two groups; one group

was then taken to an adjoining classroom; the author and a colleague were in

charge of the two groups.

Students in each group were told the following: You will be given a story about

a family of squares. The story contains some information about squares and their

properties. Your job is to change the story so that it becomes a story about

equilateral triangles (or circles). Your new story should contain information

that is accurate for equilateral triangles (or circles). The stories were passed

out, and students edited individually for 15 minutes. The edited stories were then

collected.

The students were then debriefed. Students were asked to recall from memory

what changes they had made. As each change was presented, it was labeled (e.g.,

property change) by the researcher in charge of that group. Any category not

represented by their changes was explicitly mentioned, with an example given of

that category. The debriefing lasted no more than 15 minutes.

Students were then told the following: You will be given the same story about a

family of squares. The story contains some information about sauares and their

properties. Your job is to change the story so that it becomes a story about

circles (or equilateral triangles). As before. your new story should contain

jnformation that is accurate for circles (or equilateral triangles). The stories

were passed out, and students edited individually for 15 minutes. The edited

stories were then collected and the students were dismissed.

RESULTS

Edited stories were scored as follows. At each potential change point a tally

was made according to whether a change had been made. The changes were counted

according to type: (a) name changes, (b) property changes, (c) other

160



relationship changes, and (d) consistency changes. (See Tables 1 and 2.)

Table 1

Tallies of Changes

Type of change Performance pattern a Counts b

Name 4, 0, 0 7 (7) 5 (4)

3, 1, 0 2 (2) 5 (5)

2, 2, 0 0 (0) 0 (1)

Property 7, 0, 0 1 (2) 0 (2)

6, 1, 0 4 (1) 3 (5)

5, 1, 1 1 (0) 0 (0)

5, 2, 0 1 (2) 2 (0)

4, 3, 0 0 (4) 4 (2)

3, 4, 0 1 (0) 1 (0)

2, 5, 0 1 (0) 0 (1)

Other 3, 0 8 (8) 6 (6)

2, 1 1 (1) 3 (2)

1, 2 0 (0) 1 (2)

Consistency 11, 0 2 (4) 2 (6)

10, 1 2 (4) 5 (2)

9, 2 0 (Q) 3 (0)

8, 3 3 (1) 0 (2)

7, 4 2 (0) 0 (0)

a A, B, C= A correct, B incorrect, C skipped

A, B = A correct, B skipped

b A (B) C (D) = A students editing circles first, (B) triangles second,

C students editing triangles first, (D) circles second
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Table 2

Average Number of Correct Responses

Circles Triangles

Type of Change

First Second First Second

Name a 3.7 3.3 3.5 3.8

Property b 5.1 5.4 4.7 5.1

Other c 2.9 2.4 2.5 2.9

Consistency d 8.9 10.2 9.9 10.2

a number of possible changes = 4 b number of possible changes = 7
c number of possible changes = 3 d number of possible changes =11

Each group of students generally made more correct changes after the

debriefing than before, especially property and consistency changes. On the first

editing, only 1 of the 19 subjects made all property changes correctly; 7 more

made six of the seven changes correctly. On the second editing, 4 subjects made

all property changes correctly; 6 more made six changes correctly. On the first

editing, 4 subjects made all consistency changes correctly; on the second editing,

10 subjects did so.

Both before and after the debriefing, more correct property changes were

made for editing from squares to circles than from squares to equilateral

triangles. As in the earlier study, students made a higher percentage of

superficial changes (name and consistency changes) than substantive changes.

Some of the understandings and misunderstandings of these subjects are

exhibited in the correct and incorrect changes that they made. For the circle

editings, one student deleted references to"diagonals" before the debriefing, while

four students did so after the debriefing; two students changed diagonals to

circumference before the debriefing, while none did after; and two students left

in references to diagonals before the debriefing, while none did after. Both

before and after the debriefing, two students speculated that radii met in the

middle. For the triangle editings, five students deleted references to diagonals
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before the debriefing, while none did after the debriefing; five students changed

diagonals to sides before debriefing, while two did after; four students changed

diagonals to angles before debriefing, while one did after; but four students

changed diagonal to altitude or "hypotenuse" aflat the debriefing, while none did

before. (Perhaps they were trying too hard to find another term!)

In terms of changes for the angles, the most popular changes for triangle

editings were to indicate that the angles were equal or 60°. Three students

indicated that the triangle had 3 right angles before debriefing, while one student

did so after debriefing.

DISCUSSION

The increase in changes after the debriefing is not surprising. The activity

was unusual, so the opportunity during the debriefing to see "modeling" of what

was expected probably contributed to the increase. That circle editing was easier

was also not a big surprise. Changes for triangle editing required a greater depth

of understanding, in that properties of triangles had to be carefully related to

each other. Changes for circle editing could be dealt with by thinking of

"diagonal" as "diameter." Given the typically incomplete backgrounds of

elementary teachers about geometry, however, it is not surprising that subjects

had difficulty. Too, if one assumes that the subjects were relatively

mathematically naive then one would expect that they would have difficulty

relating properties.

The story editing activity allowed students to demonstrate proactive use of

mathematics rather than reactive use as is typically called for in a diagnostic

test. For example, this difference is exhibited in the failure of students to change

"diagonal" to something more appropriate, especially in the editing to triangles.

The data show that misunderstandings can be either passive or active; students

can explicitly write something that is wrong (Radii meet in the middle.) or they

can simply ignore incorrect statements created by changing the name of the shape

(Their diagonals met in the middle, a fact not unusual for triangles.).

That there were so many different replacements for the term, "diagonals," was

somewhat surprising; such a wide range of changes was not observed in the

earlier study. More investigation seems warranted about whether these options

represent significant conceptual misunderstandings or more minor difficulties
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with vocabulary. It may also be important to relate students' editings to the van

Hie le levels of geometric thought.

Many of the misunderstandings might fairly easily be observed with

traditional diagnostic techniques; for example, responses to test items. However,

it seems much more difficult to find out whether these students really "believe"

that diagonals exist in triangles through such traditional means. Both active and

passive misunderstandings can lead to situations in which incorrect concepts

might be learned. We need to become at least as aware of the effects of passive

misunderstandings as we are of the effects of active misunderstandings.

Story editing seems to hold promise as a diagnostic tool; there may be

misunderstandings that are exhibited in this setting that are not easily exhibited

elsewhere. However, a correlation needs to be made between performance in

story editing and in other diagnostic situations (e.g., diagnostic test, clinical

interview). Do students exhibit the same (mis)understandings across all

situations? If not, what are the factors that influence performance in each type.

of situation? Too, students may view story editing more as a writing exercise

than a mathematical one, and consequently math anxiety may not interfere with

performance in this situation as much as in other (more test-like) situations. It

is unlikely, however, that all mathematics content is equally amenable to story

construction. Those areas that might best be used need to be identified, and

stories need to be created to highlight important conceptual problems that

students are likely to encounter.
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THE VAN HIELE MODEL
OF GEOMETRIC UNDERSTANDING

AND GEOMETRIC MISCONCEPTIONS
IN GIFTED SIXTH THROUGH EIGHTH GRADERS

Marguerite M. Mason
Northern Illinois University

This study investigated the thinking in geometry
according to van Hie le's five levels of 43 students in
the sixth through eighth grades who had been identified
as gifted. Analysis of both clinical interviews and
paper-and-pencil tasks indicated that the majority of
subjects are Level 0 thinkers who consistently
recognize shapes by their appearance as a whole but
23% of the subjects exhibited thought patterns
characteristic of a higher level without having
achieved at least one of the previous levels. Specific
geometric misconceptions were also identified.

Dutch educators P. M. van Hie le and Dina van Hiele-Geldof proposed a

linearly-ordered model of geometric understanding. The-van Hie le theory asserts

that there exist five hierarchical levels of geometric thinking that a successful

learner passes through: Basic Level visualization, Level 1 - analysis, Level 2

abstraction, Level 3 - deduction, and Level 4 rigor. According to the van

Hie les' model, the learner cannot achieve one level without passing through the

previous levels. Progress from one level to the next is more dependent on

educational experiences than on age or maturation, and certain types of

experiences can facilitate (or impede) progress within a level and to a higher

level (Fuys, 1984).

Previous research tends to support the hierarchical nature of the van Hie le

levels within several populations. Joanne Mayberry (1981) found sufficient

evidence among 19 undergraduate preservice elementary teachers to support this

aspect of the theory, but she rejected the hypothesis that an individual
demonstrated the same level of thinking in all areas of geometry included in the

school program. The van Hiele levels of her subjects were quite low: they did not

recognize squares as rectangles and did not perceive relationships between

classes of figures.

In examining high school sophomores, Usiskin (1982) found that over 80%

of these students can be assigned a van Hie le level be means of a paper-and-

pencil test, but students may be in transition between levels and therefore
difficult to classify. Burger and Shaughnessy (1986) found mainly Level 0
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thinking for subjects in grades K-8. They described the levels as dynamic rather

than static and more continuous than discrete. Fuys, Geddes and Tisch ler (1985)

utilized instructional modules in geometry with sixteen sixth graders and sixteen

ninth graders. They found entry levels of 0 and 1, but several students,
especially those deemed above average in mathematics ability prior to
instruction, exhibited Level 2 behavior by the completion of the six hours of

clinical interviews and instruction. They also reported several misconceptions

or errors found among these sixth and ninth graders. Among the examples cited

were thinking "sides" refers only to vertical segments, using the phrase

"straight lines" when referring to parallel lines, and thinking that a

parallelogram has to have oblique angles (Fuys, Geddes and Tisch ler, 1985, p.

199). Hershkowitz (1987) found several geometric misconceptions displayed

by students in grades 5 through 8. Examples include misidentification of right

triangles, isosceles triangles, quadrilaterals and altitudes in various types of

triangles.

Research indicated that gifted, average, and retarded children all follow the

same pattern of progression through the Piagetian stages (Roeper, 1978; Weisz

& Zig ler, 1979; Carter & Ormrod, 1982). Gifted students showed superiority

on Piagetian tasks over students of normal intelligence at every age level tested.

Piaget proposed that the transition to formal operational stage occurs at ages 11

to 12. Carter and Ormrod (1982) found that the majority of subjects of average

intelligence were still transitional to formal operations even as late as age 15.

They also found that the gifted subjects entered formal operations successfully by

12-13 year of age (p. 114). Does the gifted students' ability to operate

abstractly earlier than other students affect the linearly ordered development

hypothesized by the van Hie les?

The purpose of this study was to investigate the thinking in geometry

according to van Hie le's five levels of subjects in the sixth through eighth grades

who had been identified as gifted and to identify specific geometric misconceptions

held by these students.

METHOD

Subjects
The present study focuses on the levels of geometric understanding and

misconceptions among students in the sixth through eighth grades who have been

identified as gifted based on IQ or standardized test scores and teacher
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recommendations. The population consists of two distinct groups of subjects: the

first group includes seven seventh graders and six. eighth graders who were
enrolled in an Algebra I course in a small rural district. All subjects in this
group had scored above 420 on the Mathematics Subtest of the Scholastic Aptitude

Test which was taken when they were in sixth grade. The second population

representing 27 different school districts consisted of 15 sixth graders, 10
seventh graders, and 5 eighth graders attending a one week summer camp for the

Academically Talented.

Procedure

The van Hiele level of the first groups of subjects was determined using a 25

item multiple choice paper-and-pencil test developed by the Cognitive
Development and Achievement in Secondary School Geometry Project (CDASSGP)

(Usiskin, 1982). In addition, they participated in a 30 - 45 minute interview
based on Mayberry's questions. The summer camp subjects completed the
CDASSGP test as well. Additionally, selected questions of particular interest

from the interview were administered in written form to these students. The

paper-and-pencil and interview questions focused on the concepts of square,
isosceles triangle, right triangle, circle, parallel lines, similarity, and

congruence.

RESULTS

Test Scores

The distribution of the CSASSGP test scores by group can be seen in Table 1. A

number of the unclassifiable scores (labelled ? in the tables) were related to

students showing mastery of Level 4 type problems when they had not mastered

Level 3.

The distribution of highest van Hiele levels mastered by grade level appears in
Table 2 below.
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Table 1

% of Subjects by Grow) at Each van Hiele ',eve(

as Determined by the CDASSGP Test

Group n

van Hiele Level

below 0 0 1 2 3 4

Algebra 1 3 0 6 2 1 5 8 0 0 1 5

Camp 3 0 1 0 4 3 1 3 7 0 0 2 7

Table 2

% of Subjects by Grade Level at Each van Hiele Leve(

as Determined by the CDASSGP Test

van Hiele Level

Grade n below 0 0 1 2 3 4

Eighth 1 1 0 5 5 9 1 8 0 0 1 8

Seventh 1 6 6 5 6 1 3 6 0 0 1 9

Sixth 1 6 1 3 3 8 1 9 0 0 0 31

Total 4 3 7 4 9 1 4 7 0 0 2 3

Interviews
Analysis of the protocols from the interviews indicates several patterns not

apparent in the multiple choice tests. All subjects identified a square with its

sides rotated 45 degrees from parallel to the sides of the paper as being a square,

but 60% of the subjects did not identify such a rotated rectangle as being a

rectangle. 7% did identify V as being a rectangle. The three students who
did this included "has four right angles" or "has four 90 degree angles" as part of

their definition of a rectangle. However, the four right angles did not appear to

be the attribute they were focusing on. Rather these subjects were focusing on
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the non-critical attribute for a rectangle of having two long sides and two short

sides which was not always mentioned in their definitions. 35% did not identify a

rotated rhombus as being a parallelogram.

Many students had incorrect definitions of various terms. For example, an

isosceles triangle has exactly two congruent sides and a rectangle has two long

sides and two short sides. Other students were unsure of the definitions of

mathematical terms such as isosceles, congruent and hypotenuse. For terms such

as similar, they attempted to use the English language definition of the word to

apply to the mathematical problem. For example, if they had not been
specifically taught the mathematical meaning of the term "similar", students

used definitions such as "It's like the same, but there might be a very slight little

difference.", "Two figures look a little, sorta like each other.", or "Congruent

means exactly. Similar, you know, means maybe like this much off and stuff."

Most of these gifted students attempted to deduce the definitions of terms they

were unsure of from the context of the questions. They would then base their

answers upon their conjectured meanings, no matter how conceptually inadequate

they might be. Generally, the subjects were consistent, given the definition they

were basing their thinking on, and often quite sophisticated in their reasoning.

When they were faced with a contradiction or inconsistency, they would generally

fault their definition. Some students would simply give up at this point, while

others would attempt to change or refine their definitions. They enhanced their

definitions as they detected additional information in the context of subsequent

questions as well. In dealing with terms they had an existing schema for, such as

the English language definition of "similar", subjects had a tendency to persist in

their definitions. Apparent inconsistencies were often ignored.

Many subjects exhibited a lack of knowledge of properties, which should be

mastered at Level 1. For example, 47% of the 43 subjects said that a right

triangle doesn't always have a largest angle. The other 53% (23 subjects) said a

right triangle always has a largest angle and 18 of the 23 identified it as the

right angle or as 90 degrees. When asked if a right triangle has a longest side,

53% of the 43 subjects answered no. Of the remaining 20 students (47%) who

said a right triangle does have a longest side, only 5 could name that side as the

hypotenuse.
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An identical 47% correctly answered the Level 4 question:

Suppose you have proved statements I and II.
I. If p, then q.

II. If s, then not q.
Which statement follows from statements I and II?
A) If p, then s.
B) If not p, then not q.
C) If p or q, then s.
D) If s, then not p.
E) If not s, then p.

DISCUSSION

Only 7% of these gifted subjects were classified as having attained van Hie le

level 2 as measured by the CDASSGP test. These findings are consistent with

those of Fuys, Geddes, and Tisch ler (1985) with sixth and ninth graders.

Analysis of the clinical interviews confirmed Mayberry's rejection of the
hypothesis that an individual demonstrates the same level of thinking in all areas

of geometry included in the school program (1981). Performance was hampered

in many areas by subjects' lack of definitions, incorrect definitions and
misconceptions. In many cases where the subject could give a reasonable

definition if a figure such as a rectangle, they still depended on the shape of the

figure as a whole to identify the figure rather than its specific features as
enumerated in the definition they had given. Even when they utilized specific

features of a figure for identification, they frequently focused on non-critical
attributes.

The reasoning ability of the subjects was far beyond what may have been

anticipated, given their lack of knowledge of basic definitions and concepts. In

many cases, the students would build valid logic structures based upon their
conjectured definitions. This type of thinking is indicative of Level 2, but has

been accomplished without knowledge of specific definitions or geometric content.

Deduction is meaningful to most of the subjects. In fact, many of them (47%)

could manipulate symbols without referents according to the laws of formal logic.

However, they have not been exposed to the "rules of the game" and so do not know

how to construct an acceptable proof. It should be noted that deductive reasoning

is a skill which can be developed outside the context of geometry as it apparently

has with many of these subjects.

Generally, these students were capable of handling inclusion relationships if

they had suitable definitions of the elements involved, a characteristic of Piaget's
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Stage 3 as well as van Hie le's Level 2. But an equilateral triangle can not be an

isosceles triangle if you think that an isosceles triangle has exactly two sides.

While the though patterns of these gifted subjects do not seem to be described

well by the van Hie le theory of geometric understanding, they do need Level 1 and

Level 2 experiences in order to provide a foundation for their reasoning, so that

they do not have to deduct the meaning of the terms they encounter and the

relationships. Provided with this additional background, gifted junior high

students should be capable of a proof oriented geometry course.
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THE UNDERSTANDING OF TRANSFORMATION
GEOMETRY CONCEPTS OF SECONDARY SCHOOL

STUDENTS IN SINGAPORE

Yee-Ping Soon and Janice L. Flake
Florida State University

This paper reports a study which investigated the van Hie le-like
levels of understanding of transformation geometry concepts of
secondary school students in Singapore. Results show a possible
hierarchy of the levels where most students were at the lower two
levels. The paper presents a description of the behavior of the
students In transformation geometrical tasks.

Geometric transformations became a part of secondary school mathematics

curriculum in Singapore in the 1970's. The hope was that children would get

insights into the mathematical structure and the underlying unity of mathematics

through learning of geometric transformations. In England, Kuchemann (1980)

professed that these aims of transformational geometry were as inaccessible to
many children as was the deductive geometry.

van Hie le (1958) proposed a five level sequential theory. Many studied

these levels and showed them to be useful in explaining geometric understanding.

See Soon (1989) for references. The question now is whether the model is equally

applicable to the learning of transformation geometry. Hoffer (1983) proposed and

applied the van Hie le model for transformation geometry. The goal of this research

project was to investigate whether the model could help to explain the understanding

of transformation geometric concepts (in particular, reflection, rotation, translation

and enlargement) of Singapore students. In Singapore, students normally received

instruction on transformation using a coordinate and matrix approach in a
traditional classroom setting.

METHOD

A van Hie le-like level characterization for transformation geometry followed

from interpreting Hoffer's proposal and relevant literature relating to the van Hie le

model. The researcher developed questions fitting the descriptions of the levels.

The list of questions and level of characterization, critiqued by a panel of
mathematics educators suggested revisions and validation for the first four levels.

A criterion level was set for each concept at each level.
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Twenty students selected from a secondary school containing representatives

of the two streams in Singapore tried the validated test items in one-on-one
interviews. The students, ages 15-16, were in the fourth year in the secondary
school. Each student went through two sessions of in-depth interviews of about one

and half hour each with video or audio taping of the interviews. During the
interview the researcher probed for understanding and thinking. In the analysis, two

persons independently assigned levels based on students' responses. The researcher

followed the procedures used by Mayberry (1981) to analyze the data for patterns

of behaviors for possible level hierarchy using a Guttman Scalogram.

RESULTS

Analysis of the response patterns of the students seemed to support a
possible hierarchy of the levels. It revealed that most of the students were at Level

1 and Basic Level. The percentage of responses at each level of thinking was:

Basic, 42.5 %; Level 1, 36.25 %; Level 2, 6.25 %; Level 3, 12.5 %.

Students showed limited use of precise language. In describing each
transformation they frequently used their fingers to show movement. For rotation

and reflection, students commonly used the word "move." Students described the

image due to reflection as "opposite," or "left side becomes right side" to convey
reverse orientation. The subjects seldomly used the words "congruence" and
"similarity," concepts generated as a result of transformations. They employed

descriptions such as "fit each other," "map onto each other," "equal," "equal angle but

sides enlarged two times." The students used the word "mapping" quite loosely and

interchangeably with the ideas of congruence and similarity.

Their success in the transformation tasks seemed to be in the order
reflection, rotation, translation and enlargement. The students often recognized and

viewed each transformation as a whole for motion. The students did not
spontaneously give the specifics -- center and angle of rotation, center and scale

factor for enlargement, line of reflection, and translation vector -- in describing each

transformation. The students gave these responses only if elicited by the researcher.

The location and size of these specifics seemed to affect their performances.

Students often saw rotation as a turning effect. In one of the items (see
Figure la) students were to identify a single transformation and locate the center

of rotation. Figure lb showed one of the solutions presented by one of the students.

She viewed it as a translation followed by a rotation with the foot of the figure as
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the center. She was unable to give a single transformation. In the same task, most

students could nearly locate the center of rotation by viewing but had difficulty

doing it accurately.

ta) ( b)

Figure 1. A Test Item and Solution of a Student

In another rotation task, students were to draw the image of a line segment

AB rotated 90 degrees counterclockwise about a point 0 external to AB. The same

student, disregarding the direction of turning, used the end points A and B, rotated

90 degrees, and located the images A' and B' as shown in Figure 2a. A second

student focused on A as center and rotated AB as indicated in Figure 2b. This

latter student completely disregard the point 0. Figures 2c and 2d show two other

solutions to the same task.

(4) (b) (c)

Figure 2. Solutions of Students to a Test Item

a

Ng

c0

Another item on rotation seemed to reveal that students have problems with

visualization. In this item, students were to give the coordinates of the image C' of

C after a clockwise rotation of ABC, 90 degrees about the origin. They were given

the coordinates of A, B, C and B' and the figure showing the respective positions

with the coordinate axes as shown in Figure 3. Students were to estimate the

location of C'. Cl, C2, and C3 show some of the estimations presented by the

students. None estimated the location correctly, however, most were able to

complete the task accurately and correctly using compasses and ruler.
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CI

Figure 3. Estimation of Location of C'

C

The scale factor in enlargement confused the students. To many students,

a positive scale factor produced a larger image and a negative factor produced a

diminished image. The responses of the students to the properties of
transformations revealed that they perceived enlargement as one which always

changed the size of figures.

For translation, many students viewed each movement as composed of two

components -- horizontal and vertical displacements. The students were introduced

to translation as a column matrix. However, they had difficulty interpreting the

translation vector geometrically.

Although their instruction uses a coordinate and matrix approach to
transformation, students had difficulties in relating a given matrix to a visual
representation. However, most were able to tell certain transformations associated

with matrices taught by their teachers. The students memorized these matrices.

Students were very proficient with operations on matrices.

At Level 2 as proposed by Hoffer (1983) for transformation geometry, the

students are to relate the properties of the transformations, for example, the
composition of two reflections being equal to a rotation or translation. This was not

in the curriculum, so they were unable to use these interrelated properties in solving

the items.

At Level 3, where items required them to do proofs, most students gave
particular examples as solutions. To prove a given statement, most students
investigated using instances by way of drawing. Later they showed the particular

example as proof. In presenting proofs of congruency or similarity of two geometric

figures, students often used a visual approach by initially comparing corresponding

sides and angles. They then proceeded to identify the correct transformation

ignoring the specifics in describing the particular transformation. Quite frequently,
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they gave incorrect specifics of the transformation especially for enlargement. Some

of the reasons for proof of congruency or similarity were "no changes to angle or

sides," and "mapping onto each other.."

During the interviews, the researcher questioned the students on their
solutions. Quite often, they referred to the teacher and the text as reasons for their

solutions. In addition, they would say "I can't remember" when a certain procedure,

which they knew would help them to solve the problem, was forgotten.

One student who reached Level 3 for three of the concepts and Level 2 for

enlargement could give reasonable explanations to all her solutions, and even

conjectured at Level 2 for the interrelated properties of the transformations.

DISCUSSION

The van Hie le-like levels seemed to explain the behavior of the students as

seen in the study. They viewed each transformation as a whole in motion before

attending to properties and specifics of each transformation. The students in this

study had transformations introduced through coordinates and matrices perhaps

contributing to their deficiencies in pictorial representation and behavior for the

rotation items mentioned above. However, the intuitiveness of transformation

enabled them to answer the test items at the Basic Level. Their lack of precise
vocabularies in describing transformation points to the language that van Hie le

(1958) placed so much emphasis on at each level. Their reference to authority for

confirmation of solutions reflected the traditional school mathematics environment.

A more dynamic problem-solving approach to instruction is being advocated now

where students work in groups to explore, observe, discover, predict, conjecture, and

communicate. This would allow them to be in control of their own learning. In

addition, the students should be exposed to more real-life applications of
transformation to develop meaningful learning.

The results and findings are limited to the twenty students, all female, under

this study. Future study should include a broader range of students to look into the

higher levels of thinking.
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PROPORTIONAL REASONING IN YOUNG ADOLESCENTS:
AN ANALYSIS OF STRATEGIES

Shari Larson, Merlyn Behr, and Guershon Harel
Northern Illinois University

Thomas Post
University of Minnesota

Richard Lesh
Provo, Utah

The present study employs a qualitative proportional reasoning task
incorporating increase, decrease, or stays the same transformations
on the numerator or denominator in a non-numeric setting in order
to determine the influence of instruction, problem type, problem
format, gender, and individual differences in strategy use.
Prototypes of subjects' strategies and percent correct scores from
responses are described.

One ubiquitous content domain for the study of the cognitive development of

individuals is proportional reasoning--"a term that denotes reasoning in a system of

two variables between which there exists a linear functional relationship" (Karplus,

Pulps, & Stage, 1983, p. 219). Numerous problem types and contexts have been

employed to investigate strategies, errors, and complexities of proportional reasoning

abilities. For instance, problem context, discrete vs. continuous measures, problem

format, numeric vs. qualitative problem type, subject characteristics, and gender

constitute significant factors that may influence individual and group proportional

reasoning problem solving, some of which have been studied.

Strategy development and use are described by many researchers (e.g., Noelting,

1980). Noelting (1980) described individual differences in strategies using a numeric

lemonade mixture problem context. Pulps, Karplus, and Stage (1981) examined

problem content (discrete vs. continuous objects), numerical structure, age, and

gender and found that numerical structure effected mean differences in subjects

where equal-integer problems resulted in higher performance compared to unequal-

non-integer problems. Also, Heller, Ahlgren, Behr, and Lesh (in press) found that

familiar rate types in the context of qualitative numeric proportional reasoning

problems were easier for students to solve than less familiar rate types. Students

have difficulty with more/more and less/less qualitative proportional reasoning

problems highlighting the effects of rate type on student performance (Heller et al.,

in press).

The present study employs a qualitative proportional reasoning task
incorporating the same types of combinations of transformations used by Noelting
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(1980) and Heller et al., (in press)--that is, increase, decrease, and stays the
Sameyet in a non-numeric setting in order to determine the influences of
instruction, problem type (discrete vs. continuous contexts), problem format, gender,

and individual differences on strategies used in problem solution by early
adolescents.

METHOD

Subjects

Eleven seventh-grade children from Minneapolis, Minnesota (4 females, 7 males)

and ten seventh-grade children from De Kalb, Illinois (4 females, 6 males) were

selected as participants in a teaching experiment. The teaching experiment was

conducted during the spring semester of 1987 over a period of about 17 weeks. The

instruction incorporated a heavy emphasis on active experiential learning based on

various tasks incorporating proportional reasoning. High, middle, and low
mathematical ability levels equated the Minnesota and De Kalb groups. Two subjects

did not complete the pretest, posttest, or items from the first three interviews.

Procedure

Qualitative proportional reasoning problems were selected for investigation in

the present study. After drawing a box-fraction representation (g), the
experimenter stated, "Here is a fraction. It has a top number and a bottom
number." Then questions about differing transformations were asked of the subjects

(e.g., "What happens to the value of the fraction if the top number increases and the

bottom number decreases?").

Six numerator-denominator transformations defined by combinations of increase

(I), decrease (D), and stays the same (S)-- I/D, D/I, D/D, S/I, I/S --were
presented.

Problems were presented in a fraction, ratio, or chart format. During interviews

I and H, the experimenter referred to the drawn representation as a fraction with

a numerator (top box) and denominator (bottom box). However, in interview IV,

the emphasis changed from fraction to ratio, and one box represented some number

of rectangles (i.e., the numerator) and the other box represented some number of

squares (i.e., the denominator). Some number of cans of red and white paint
corresponded to boxes designated in the second part of interview IV. In each part

of interview IV, four problems were presented in ratio format and four in chart
format.
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Strategy Description

Following data collection by video recording, subjects' verbal responses were

transcribed and analyzed in order to determine the type and frequency of strategies

used to solve the tasks. Eight strategy categories accounted for all of the responses:

namely, qualitative transformation strategy (QLTS), quantitative transformation

strategy (ANTS), reference point strategy (RPS), whole number dominance (WND),

reciprocal rate strategy (RRS), manipulative strategy (MS), and unit rate method

(URM). Other categories were used to describe undetermined responses
(OTR = other), no reasons given (NRG), and missing data (MD). Some strategy

categories were further subdivided to discriminate among substrategies within

categories. Detailed descriptions of general categories and subcategories are

subsequently discussed.

Qualitative transformation strategy (OLTS). Qualitative transformation strategies

consist of intuitive ideas about the change or no-change in the size of fractions and

ratios under various transformations in the absence of any reasoning based on
numerical manipulations or transformations. This general reasoning strategy about

transformations of fractions is further divided into 8 substages describing types of

qualitative reasoning subjects used. These substages, along with prototypical

responses from subjects are subsequently described. The responses were given to

questions like: What happens to the fraction (ratio) if the top number (increases,

decreases, or stays the same) and the bottom number (increases, decreases, or stays

the same)?

Descriptive (DES). The subject describes a situation, provides a rationale, or
elaborated on an answer.

Interview I (Inc, Inc) Ann: "The bigger the numbers are the smaller the
fraction...more you cut, the less it is."

Transform numbers--fraction increases. The subject states or implies that, because
both of the numbers change in the same direction, the fraction increases.

Interview II (Dec, Dec) Shannon: "5/6--4/3... . No, 5/6--4/5.
Increase...Yes any time both numbers decrease then the fraction will
increase."

Transform numbers--fraction decreases. The subject states or implies that, because
both of the numbers change in the same direction, the fraction decreases.

Transform numbers--fraction stays the same. The subject states or implies that,
because both of the numbers change in the same direction, the fraction stays the
same.
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More than strategy. Subject states that if you transform one dimension (e.g., white
paint, the numerator, or squares) more than another (e.g., red paint, the
denominator, or rectangles) then a certain outcome will occur.

Interview IV (Dec, Dec) Ann: "stays the same because decrease both...(I:
Always?) no if you decrease one more than the other...if you decrease white
more than red then darker...if you decrease the same then stays the same...if
decrease red more than white then lighter."

Transform--change. Subject states that if a dimension increases (or decreases) more
than another dimension then the fraction changes in value.

Action-outcome, Action-outcome. Subject states one outcome based on a
transformation, then states a second outcome (usually similar but to a greater
degree of the first outcome) based on another transformation.

Interview IV (Dec, Inc) Jon: "3/4...if decrease the numerator then gets
smaller but if increase denominator then gets even smaller."

You don't know-rule based (YDK-R). This rationale is based on a mental rule
stated by the subject (learned or spontaneously produced by the subject). No
examples are given by the child to substantiate the rule.

Interview II (Dec, Dec) Dave: "Didn't change. They don't tell you how
many more cans of red paint and they don't tell you how many more cans
of white paint...you don't know if it changed."

Quantitative transformation strategy (ANTS). A quantitative transformation

strategy describes reasoning about transformations of fractions and ratios that is

based on numerical representations or examples. The subject either provides

numerical examples to substantiate an answer or uses numbers in the process of

figuring out transformation problems. Three subcategories are listed.

Reduce then compare (R-C). The subject first reduces one or more fractions then
makes a comparison.

You don't know--understand (YDK-UND). The subject gives examples to support
his/her statement "you don't know". Subjects who answer "It depends" to the
question "What happens to the value of the fraction?" and follow this answer with
examples to substantiate the response fall into this category also.

Interview IV (Dec, Dec) Sharon: "It depends. If 2R 4W--1R 2W (R = cans
of red paint, W = cans of white paint) same. If 2R 4W--1R 3W, smaller. If
2R 4W-- 1R 1W, bigger."
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Number of times strategy. Describes the change in fractions after transformations
by considering the number of times that different dimensions (white paint,
rectangles) decrease or increase.

Interview IV (Dec, Dec) Shannon: "It depends how much you decrease it...
If decrease the same number of times (3 times) then same... If decrease R
4 times and W 2 times--redder. If decrease W more than R than lighter."

Reference point strategy (RPS). The subject compares fractions to a whole or to
one-half.

Compares to a whole-additive (CTW-A). The subject makes an additive
comparison to the whole.

Compares to a whole-multiplicative (CTW-M). The subject makes a
multiplicative comparison to the whole.

Whole number dominance (WND). Subject compares or discusses whole numbers
rather than comparing fractions.

Interview II (Dec, Dec). Jody: "6/5--5/4. Decreases. Because 6 is greater
than 5 and 5 is greater than 4."

Reciprocal rate strategy (RRS). Subject compares reciprocal rates rather than rates
asked by interviewer.

Manipulative strategy (MS). Subject uses physical representation to determine
response to transformation.

Interview IV (Dec, Dec). Carrie: Draws a pie for 4/5 and shades in 4
pieces. Draws a pie for 3/4 and shades in 3 pieces. "4/5, 3/4, 2/3, 1/2...It's
getting bigger. 4/5 is less than 3/4."

Unit rate method (URM). Subject determines a unit rate in order to determine an
answer.

RESULTS AND DISCUSSION

Trends for mean percent scores and frequencies of strategy use indicate the

existence of differences in factors related to proportional reasoning. Due to the

small subject sample, the data were not statistically analyzed, but highlight important

variables.

Strategy Data

1. Protocol analyses revealed distinct, differential strategy use between subjects.
Totals for existent strategies indicate that the qualitative transformation strategies
were used to a large extent by subjects (175), compared to moderate use of the
quantitative transformation strategies, reference point strategy, additive strategy, and
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manipulative strategy (25, 21, 21, and 27, respectively). Finally, the unit rate method
and whole number dominance strategies were used very infrequently.

2. Subjects performed best on the increase/same problem type--95% overall.
The following problem types were next in rank: same/increase (84%),
increase/decrease (81%), decrease/increase (79%), decrease/decrease (58%), and
increase/increase (55%). Although performance improved for many problem types
from interview one to interview four, note the low performance for problems where
the numerator and denominator change in the same direction.

3. Subject's overall mean percent correct scores were higher for continuous
problems (red and white paint) compared to discrete problems (rectangles and
squares)-- means are 65.87% and 81.50%, respectively.

4. Subjects obtained higher percent correct scores on problems in chart format
compared to fraction format (means are 70% and 62%, respectively for interview
four part one and 85.5% and 77.5%, respectively for interview four part two).

5. Mean percent scores for subject ability levels indicate that performance is in
the expected direction; high ability mean performance was 83.7%, middle ability
mean performance was 62.8%, and low ability mean performance was 56.2%.

Results suggest that individuals differ in strategies used to solve qualitative

proportional reasoning problems and several factors influence problem solution.
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YOUNG CHILDREN'S THEOREMS-IN-ACTION
ON MULTIPLICATIVE WORD PROBLEMS

Vicky L. Kouba
University at Albany--SUNY

This post hoc analysis reports the use of Vergnaud's
measure space diagram of multiplicative structures
to characterize children's theorems-in-action on
multiplication and division word problems. The
theorems-in-action also were identified as scalar or
function theorems. Vergnaud's diagram works well
to depict differences in children's theorems-in-action.
Children used only scalar theorems on multiplication
and measurement division problems, but both scalar
and function theorems on partitive division problems.

In his analysis and description of how children approach multiplication and

division word problems, Vergnaud (1988) identified two basic kinds of "theorems-

in-action" (mathematical relationships attended to by students when solving a

problem): a scalar approach and a function approach. Using Vergnaud's (1988) 4-

quantity, 2-measure space description of multiplicative structure, the scalar method

involves multiplying within a measure with no change in the kind of quantity (see

Figure 1, e.g., a objects x b = c objects), whereas the function method involves

multiplying across measures (see Figure 2, e.g., b groups x a = c objects ).

Ml. M2 M1 142

groups objects groups objects

1 a 1 a

xIbl
--x a-->

x b

/ b --xla- ->

Figure 1 Scalar method Figure 2. Function

of solving. method.
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This study was a post hoc analysis of a previous study (Kouba, 1989) of
children's solution strategies for multiplication and division word problems. One

purpose was to determine whether the data supported Vergnaud's (1988) conclusion

that children used scalar theorems-in-action when solving simple multiplication

problems. A second purpose of this study was to determine whether children used

scalar or function theorems-in-action to solve simple measurement division problems

(i.e., find the number of groups) and simple partitive division problems (i.e., find the

number of elements in a group). A third purpose was to explore how Vergnaud's

4-quantity, 2-measure space diagrams for multiplicative structures may best be used

as a means for describing children's solution strategies in a step-by-step linear
fashion.

The children's theorems-in-action for multiplication and division problems were

analyzed and categorized based on which of the four quantities in Vergnaud's
diagram (1, a, b, and c) were represented physically. The theorems-in-action also

were characterized based on the order that children mathematically processed the

quantities and the relationships among the quantities depicted in Vergnaud's
diagrams. Then these analyses were used to classify the theorems-in-action as scalar

theorems or function theorems, if possible.

Subjects. The subjects were 43 first-grade, 35 second-grade and 50 third-grade

children.

Procedures. In an individual interview, each child solved 2 multiplication, 2
measurement division, and 2 partitive division word problems. The problems

involved disjoint equivalent sets of whole numbers. The children had physical
materials available to use while solving. The children's responses were coded and

tape-recorded.

RESULTS

Multiplication. There were five types of representations with physical objects used

for multiplication problems: 1) The quantities a, 12, and c were represented with

physical objects. The child set out b containers, filled each container with a objects,

and calculated the total number of objects (c) in varying ways (e.g., counted one-

by-one, counted on one-by-one from a, counted by multiples of a, "counted" by

repeatedly adding a, a combination of multiple counting and counting on, or a

combination of repeated addition and counting on.) 2) The quantities a and c were

represented with physical objects -- similar to Type 1 except no containers were

used. 3) The quantity a was represented with physical objects. The child made one
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group of a objects and "counted' the group b times in varying ways. 4) The quantity

b was represented. The child "counted" b groups of a, either by use of repeated

addition or counting by multiples of a. One object was set out for each group of

a that was "counted." 5) No quantities were represented using physical objects.

Calculations were done using counting by multiples, repeated addition, derived

number facts, or recalled number facts.

All five types of representations were used at each grade level; however, Grade

1 children used primarily Types 1 and 2, Grade 2 children used all five types
uniformly, and Grade 3 children used primarily Type 5.

All of the theorems-in-action used with representa- tion Types 1-4 were scalar

in nature because the children's actions were limited to creating groups of a objects

b times. The theorems-in-action differed only in the level of abstraction used within

the representation of quantities or within the kind of counting or calculating that

was done. Children who used Type 5 representations other than derived number

facts or recalled number facts also used the number of groups as a scalar operator.

The five children who used derived number facts used scalar theorems-in-action as

well. For example, for a problem involving calculating the total number of nuts

under a tree if there were 4 trees and 6 nuts under each tree, children reported

thinking, "6 plus 6 is 12, 6 plus 6 is 12, and 12 plus 12 is 24." It was impossible to

judge whether the recalled number facts used by children were scalar or function in

nature, because during the interview no questions were asked to elicit whether the

children were thinking b times a objects or a times b groups.

Measurement Division. Theorems-in-actions used to solve measurement division

problems were classified on two dimensions. One dimension was on type of
representation and resulted in seven types. The other dimension was on whether

children used an "exhaustive take-away" theorem-in-action, a "building-up" theorem-

in-action, or a recalled number fact.

The seven types of representations were: 1) The quantities a, b, and c were

represented with physical materials. For the exhaustive theorems-in-action the

child counted out c objects, set out one container and filled it with a objects taken

from repeating this until c = 0. For the building-up theorems-in-action the child

set out a container, filled it with a objects, repeated the action of filling containers

while keeping a running count of the total number of objects that had been placed

in containers, and stopped when the count reached c. 2) The quantities a, c, and

1 container were represented with physical materials. Only an exhaustive theorem-
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in-action was used -- similar to Type 1 except that a container was used only with

the first group. 3) The quantities a and c were represented with physical materials.

These methods were similar to Type 1 methods, except that no containers were

used, objects were just put in groups of a. 4) The quantities a and b were
represented physically. Only a building-up theorem-in-action was used. The child

made a group of a objects and counted it repeatedly (in a variety of ways), keeping

a running total until c was reached and setting aside a new object each time a was

counted. 5) The quantity a was represented with physical objects. Only a building-

up theorem-in-action was used. The child made a group of a objects and counted

it repeatedly (in a variety of ways) until a total count of c was reached. 6) The

quantity b was represented with physical objects. Only a building-up method was

used. The child counted by groups of a (in a variety of ways) until the total count

reached c. An object was set aside for each group of a that was counted. 7) No
quantities were represented physically. Both exhaustive and building-up methods

were used. The exhaustive method was repeated subtraction. The building-up

methods included repeated addition, systems similar to Type 5 and Type 6 but with

a and b represented internally, and derived number facts. Children also used

recalled number facts, which were neither exhaustive nor building-up theorems-in-

action.

Grade 1 children used only exhaustive take-away theorems-in-action of Types

1, 2 and 3, primarily 1 and 3 (one child did use one repeated addition with no

physical objects). Grade 2 children used Types 1, 3, 6, and 7, primarily Type 3.

About 2/3 of Grade 2 children used exhaustive take-away theorems and about 1/3

used building-up theorems. Grade 3 children used all seven types, but about 60%

used derived or recalled number facts.

All of the theorems-in-action of Types 1-6 were scalar in nature because they

involved using the number of groups as a scalar operator. Likewise, all of the Type

7 theorems except recalled number facts were scalar. Recalled number facts could

not be classified.

Partitive Division. Theorems-in-action used for partitive division problems were

classified by type of physical representation and by order of processing steps
(exhaustive take-away or building up). Theorems-in-action for partitive problems

also were classified as "dealing-out" theorems or "guess at a" theorems. The dealing-

out theorems consisted of representing or visualizing b groups and dealing c total

objects to those groups one-by-one (often called "sharing fairly"). Guess-at-a
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theorems consisted of guessing at how many objects would be in a group and then

performing theorems similar to those for measurement division problems.

There were six types of representations with physical objects: 1) The quantities

a, b, and c were represented with objects -- (a) exhaustive guess-at-a theorems
similar to Type 1 measurement division theorems, or (b) exhaustive and building-

up dealing-out theorems. 2) The quantities a and c were represented --(a)
exhaustive and building-up guess-at-a theorems similar to measurement division

Type 3, (b) exhaustive dealing-out, or (c) exhaustive grouping theorem for which

the child counted out c objects, divided them into b groups that were unequal in

number of elements, and then redistributed elements from the groups until the

groups were equal in number (a objects in each group). 3) The quantities b and

c were represented -- the child formed groups of b objects while keeping a running

count of the total, stopped when the count reached c, counted the number of groups

formed (a) and said that each group had a objects. 4) The quantity a was

represented -- The child counted by multiples of b until c was reached, keeping track

with objects of how many multiples were spoken (a). 5) The quantity b was
represented -- building-up, guess-at-a theorem similar to measurement division Type

6. 6) No quantities were represented with physical objects. Both exhaustive and

building-up guess-at-a theorems were used, as well as derived and recalled number

facts.

No Grade 1 children used building-up theorems; most Grade 1 and Grade 2

children used representation Types 1 and 2. Grade 3 children used primarily

recalled number facts.

The guess-at-a theorems-in-action were scalar in nature, whereas the dealing-

out theorems were function in nature. Representation Types 3 and 4 also were

function in nature, but appeared more abstract than dealing-out theorems and were

the only theorems where the b quantity took on the role of being elements of a

group in the same way that the a quantity is usually treated. All of the derived

number facts were scalar in nature, although one might expect children to have used

a function theorem. For example, for a problem involving 20 objects that were

to be distributed equally into 4 groups, rather than using the "4" given in the

problem and saying "4 + 4 is 8, 8 + 8 is 16, and 4 more is 20, thus the answer is 5,"

children estimated the number of objects in a group and said "5 plus 5 is 10, then

another 5 and 5 is 20; so 5 works."
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Both scalar and function theorems-in-action were used at all three grade levels.

However, most of the children used one or the other method, but not both. Only

4 of the thirty children who solved both partitive division problems correctly used

a scalar theorem on one problem and a function theorem on the other. Therefore,

most children did not demonstrate that they could use both theorems
interchangeably.
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STUDENT USE OF RATIONAL NUMBER REASONING
IN AREA COMPARISON TASKS

Barbara Ellen Armstrong
San Diego State University

The purpose of this study was to determine whether 4th-, 6th-, and
8th-grade students would recognize the need for and apply their
knowledge of fractions i.e., use Rational Number Reasoning to solve
comparison of area tasks. Thirty six students participated in
individual task-based interviews. Their video taped responses were
analyzed for the types of strategies they used to solve the tasks. A
very low percentage of the responses revealed the use of Rational
Number Reasoning.

THEORETICAL FRAMEWORK

According to the results from research on students' concepts of fractions and

the National Assessments of Educational Progress most students do not understand

fraction concepts and cannot apply them in problem solving situations (Post, Behr,

& Lesh, 1986; Behr, Wachsmuth, & Post, 1985; Carpenter, Corbitt, Kepner, Jr.,

Lindquist, & Reys, 1981). Researchers have also found that area concepts are not

well-developed in younger students and, in fact, continue to present problems even

into adolescence (Piaget, Inhelder, & Szeminska, 1948/1960; Hirstein, Lamb, &

Osborne, 1978). However, the area model, in the form of shaded parts of geometric

regions, is the one most commonly used in elementary school for introductory work

with fractions.

Recent revisions in state and national curriculum standards make reasoning

and problem solving the focus of the mathematics program. The ability to reason

is directly affected by formal education (Luria, 1976), and the individual's ability to

reason develops over time (Inhelder & Piaget, 1958, 1964). Little is known about

the ability of students to reason with the fraction concepts they are taught in school

when they are not specifically told to use fractions to solve a problem (Kraus, 1977).

OBJECTIVES

It is the purpose of this study to determine whether students use rational

number reasoning to solve comparison of area tasks and whether the tendency to

use such reasoning increases with grade level. Rational number reasoning (RNR)

is defined as the ability to perceive the logical mathematical structure of a problem

which can be solved by the application of rational number knowledge. Students'

behavioral and verbal responses to area comparison tasks in individual clinical

193



interviews comprise the data used to answer the following questions:

1. To what extent do 4th-, 6th-, and 8th-grade students use RNR when

comparing the partitions of two areas?

2. Does the frequency of RNR responses increase when fraction symbols

are introduced into the tasks?

METHODOLOGY AND DATA SOURCE

Sample

Twelve students each from the fourth, sixth, and eighth grades were
randomly selected for the study from an elementary and a junior high school in

Tucson, Arizona. The populations attending the schools are ethnically diverse and

range in socio-economic levels from lower to upper-middle.

Tasks

Six boys and six girls at each grade level were individually presented with 21

area comparison tasks during an interview which lasted an hour or less. The tasks

consisted of comparing the shaded partitions of two rectangular regions. In 19 of

the 21 tasks the regions were partitioned in different directions (horizontally or

vertically), therefore creating partitions which were not congruent. Each of these

tasks varied by type of fraction (unit or proper multiple) or by size of unit (same or

different). In the remaining two tasks the unit sizes were the same, the same
fractions were used (7/16), and partitions were congruent, but on one area the
shaded partitions were scattered and on the other area they were clustered together.

This task was an area conservation task to test whether the arrangement of the

shaded areas influenced the students' reasoning about the task.

The first 13 tasks had no fraction symbols or terms associated with them.

As part of the last 8 tasks the students were asked to tell and write how much of

each area was shaded. The students wrote fractions for each model on Post-its

which were attached to the models. The students were then asked to compare the

shaded areas again in order to see if the fraction symbols triggered their use of
Rational Number Reasoning.

All of the conditions were present in each task for the studentsto deduce the

answer by using Rational Number Reasoning. After the students answered each of

the task questions they were asked why they answered as they did. Their responses

to the question "Why?" along with the behaviors they exhibited gave insight into the

kind of strategies they used to solve the tasks.
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The interviews were video taped, and the students' explanations and the

actions they performed during the tasks comprised the data for the study.

RESULTS

The total number of student responses was 756. These responses were

analyzed for the types of reasoning and comparison strategies the students used to

solve the tasks.

The students' explanations and behaviors indicated that they used different

types of strategies to solve the tasks. Two broad groups of strategies emerged,

those in which students focused on directly comparing properties of the models, and

those in which the students noted and used the part-whole relationships inherent in

the tasks.

Five categories emerged in which students directly compared properties of

the models. Direct comparison in this case represents the thinking that the students

verbalized, gestured, or actually demonstrated by moving the models. Responses in

these categories made up 68% of the total number of student responses. The
categories are as follows:

1) Only Area of Part(s)--Direct comparison of shaded or unshaded part(s)

2) Only Length of One Dimension of Parts--Direct comparison of either the

widths or lengths of the shaded or unshaded parts.

3) Only Number of Parts--Direct comparison of number of shaded or unshaded

parts.

4) Combination of Properties--Direct comparison of more than one of the

properties, and

5) Other--Responses too vague or which did not fit any of the identified

categories.

Four categories of reasoning were identified in which students formed or

partially formed part-whole relationships. Responses in these categories made up

32% of the total. The categories are as follows:

1) Rational Number Reasoning--Fraction terms associated with and used to
compare shaded areas, unit sizes compared, and conjunction used to relate parts

to wholes.

2) Partial Rational Number Reasoning--Fraction terms associated with and used

to compare shaded areas, one or more of the other RNR conditions were

omitted.
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3) Area Part-whole--Number of parts in whole compared, number of parts shaded

compared, size of unit compared.

4) Area Partial Part-whole--One of the conditions was omitted from those in Area

Part-Whole category.

Over all of the tasks percentages of RNR responses by the students in this study

were low. The percentages of RNR responses by students at the three grade levels

are as follows: fourth graders 2%, sixth graders 3%, and eighth graders 4%.

In order to answer the second question of this investigation the percentage of

RNR responses is tabulated by tasks without and with symbols introduced. As can

be seen in the table below, the percentage of responses at each grade did not vary

a great deal for the tasks without symbols. After the symbols were introduced the

percentage of RNR responses at each grade level increased slightly, with the 8th

graders showing the highest percentage of increase, 8%, while the 4th and 6th
graders only increased by 2%.

Percent of Rational Number Reasoning Responses Without and With Fraction
Symbols at Each Grade Level

% RNR

Grade Without' Withb

4 1 3

6 2 4

8 1 9

'Percentage of total
association of fraction

bPercentage of total
association of fraction

number of responses (468) to tasks presented without
symbols.

number of responses (288) to tasks presented with the
symbols.

199
196



CONCLUSIONS

Even though area models are prevalent in fraction instruction throughout the

elementary school grades, most of the students did not use fraction knowledge to

compare the shaded parts of the rectangles. The introduction of fractions into the

tasks did seem to trigger the use of RNR much more frequently by the eighth
graders, but on their own they did not recognize that the structure of the task called

for the use of their fraction knowledge.

This study provides insight into the thinking of elementary and junior high

school students as they solve comparison of area tasks. The study also provides the

opportunity to identify the kinds of task conditions to which students attend when

their thinking is not directed to particular conditions. It is important to gather
information in this area in order to understand the kind of reasoning students use

when faced with novel problems.
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Multiplicative Word Problems
- Recent Developments

Alan Bell
Shell Centre, University of Nottingham, U.K

ABSTRACT

Five types of structure are identified in asymmetric (isomorphism of

measure) problems requiring one operation of multiplication or division;

these are Multiple Groups, Repeated Measure, Rate, Change of Size and

Mixtures.

Performance on such questions is dependent on the context, the
structural type and the types of number occupying certain roles in the

problem. In multiplication problems, difficulty is strongly dependent on the

type of number in the 'preferred multiplier' role.

In division problems, choice is dominated by the numerical preference

for dividing by an integer and/or the smaller of the two numbers,
particularly if the one is divisible by the other; decimal points are often

ignored in determining this preference. The misconception that multiplying

makes bigger and division smaller operates, but not in all structures.

In a recent experiment half the subjects were asked to give an estimate

of the approximate answer, and half to choose the operation. Estimating the

outcome was easier than choice of operation in division, and in
multiplication by numbers less than 1. In multiplication by numbers
substantially greater than 1, the reverse was true.

Introduction

A considerable body of research now exists on pupils' comprehension

of problems embodying multiplication and division. This article extends

the range of structures so far studied, to include Change of Size and

Mixture problems, where the two quantities may be measured either in

the same or in different units, and also compares results in two response

modes, estimate and choice of operation.

Vergnaud (1988) has drawn an important distinction between

isomorphism of measures, involving a correspondence between two
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quantities measured by numbers, and product of measures. In this article,

we are concerned with the first of these; in such problems, multiplication

is always asymmetric, multiplier and multiplicand playing distinct roles.

A classification of such problems is shown in Table 1.

Table 1
A Classification of Asymmetric Multiplicative Situations

showing the preferred multiplier, as empirically determined

Structure Multiplication Multiplicand Multiplier

Multiple 3 boxes contain 4 4 eggs/box 3 boxes
groups eggs each. How

many eggs are
there altogether?

Repeated A gardener needs 3 4.6 metres/ 3 pieces
measure pieces of string each piece

4.6 metres long.
How much string
should he buy?

Rate A man walked at 4.6 miles/ 3.2 hours
an average speed hour
of 4.6 miles per
hour for 3.2 hours.
How far did he walk?

Change A photograph is 3.2 inches scale
of size enlarged by a factor factor 4.6
(same of 4.6. If the height
units) was originally 3.2

inches, how high
is the enlarged
photograph?

Change A model boat is 4.6 metres/ 3.2 inches
of size made to a scale inch
(different of 4.6 metres to
units) an inch. If the

model is 3.2 inches
long, how long is the boat?

Mixture A painter makes 3.2 pints scale
(same a particular colour factor 4.6
units) by using 4.6 times

as much red as yellow.
How much red should
he use with 3.2 pints of
yellow?
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Mixture 4.6 lbs. of powder 4.6 lbs/ 3.2 gallons
(different are to be mixed gallon
units) per gallon of

water. How many
lbs. should be
mixed with 3.2
gallons?

In the first two structures listed here, there is an integral number of

repetitions of either a set of objects, or of a continuous quantity. The

remaining structures all consist of a correspondence between two such

quantities. Rate is the most general case of this. In Change of Size the

correspondence is between versions of the same quantity, which may or

may not be measured in different units. Map scale problems are an

example in which the units are normally different. In Mixture problems

two component quantities are physically brought together; they also may

be measured in the same or different units.

The distinctions between an explictly stated rate, eg. 'How many

miles per hour?' and 'How many miles in one hour?', or 'in each hour?'

are also psychologically important and are reflected in substantial

differences in difficulty.

In the first two structures, Multiple Groups and Repeated Measures,

the multiplier is (by definition) the number of repetitions. In the later

structures, the preferred multiplier is the quantity which plays the

analogous role . Which of the two quantities this is, is not always clear a

priori . The identifications in Table 1 are those determined empirically

In Table 1 the classes are represented by multiplications. There are

also two types of division problem. These are partition, which in the

first two structures means division of the total amount into a given

number of parts, the result being the size of each part, and quotition, in

which the size of each part is given and the number of them is required.

We have extended these concepts into the later structures, the number of

parts generalising to the multiplier.

Previous work in this field has studied the effects on recognition of

the correct operation of different types of number, structure and context
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(Bell, Fischbein & Greer, 1984). The results show strong numerical

misconceptions, that multiplication makes bigger and division smaller

(MMBDS), and that division must be of a larger number by a smaller one.

These factors interact with the generally good perception of the size of the

numbers and of the quantitative relations in a problem, to lead to
erroneous choices of operation.

Incidence of numerical misconceptions

The numerical misconception MMBDS appears to operate not in all

cases, but only in those where there is a natural comparison between size

of operand and result. For example, it operates in '0.7 hours at 8 miles

per hour, how many miles?', but not in '2.4 metres of cushion material

cut into lengths of 0.48 metres. (Bell et al, 1984)

In Rate partition questions, (e.g. 0.75 hg cocoa cost 900 lire, howmuch
does 1 hg cost?) MMBDS dearly operates. Rate quotition questions also

attract multiplications, which suggests that MMBDS operates here,

though not in pure quotitions. An example is: What capacity in litres
has a 5.5 gallon fuel tank, if a litre is 0.22 gallons?' (Bell et al., 1980. We
can see that, in this last case, there is a natural comparison between the

capacity in gallons and the perceived greater litre-measure of the same

capacity, which might produce the pull towards multiplication.

However, rate quotition questions are susceptible to another factorwhich
also tends to favour a choice of multplication. This is discussed below

Confusion of measures in rates

This factor came to light from observations of Rate Quotition

questions requiring a smaller number to be divided by a larger. For
example, 4.8 miles at 5.24 mph, how long?, attracts some reversal errors,
as would be predicted, but even more multiplications. A striking

difference appears between Rate Partition and Rate Quotition questions,
in that when errors are made, the proportion whichare reversals, rather
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than choices of multiplication, is high for partitions low for quotitions.

These dominant errors both correspond to a confusion between the

numerator and denominator roles in the rate, e.g. between miles per

hour and hours per mile; this is stronger in the 'per' form than in the

form 'miles in each hour'. We quote two pupils:"4 grams per penny and

4 pence per gram are the same, just swapped around"; "distance + time

equals speed" "Why?" "km + hrs = km per hour" (Bell, Fischbein &

Greer, 1984; Bell & Onslow, 1987).

Numerical preferences

Certain results are inexplicable by the above hypotheses and suggest

an additional factor of numerical preference. For example, number

combinations such as 7/23 and 2.4/0.48 attract more than the expected

number of reversals (decimal points may be ignored). And a problem

concerning the amount of meat for £2, if the price is £2.56 per pound,

produced a fair number of subtractions; interviews suggested that the

reasoning was that the answer would be less than a pound weight, but

2.56/2 is too much, where as 2.56 - 2 is an easy operation, and gives an

answer of about the right size (Bell et al, 1984).

Structure

The relative difficulty of the different structures is unclear in most of

the literature, since the supposedly harder structures are generally

associated with the harder numbers. But there is some evidence that Rate

questions are substantially harder than Repeated Measures given similar

types of number. (Two quotitions 17.6/2.2 scored about 60%, two Rate

Quotitions, in speed and mileage per gallon, 56/37.5, scored about 30%

(Bell 1984). Within the structures of Table 1, there do not appear to be

great differences between contexts (Bell, 1984) but this factor has not been

systematically examined.
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Evidence from problem writing tasks, to fit given calculations, is of

strong tendencies to use the earlier structures of Table 1 whenever the

numbers allow it (and often when they don't), including choosing

Multiple Groups rather than Repeated Measure; except for price, which

is an exception, being frequently used. There is also a universal

preference for partition rather than quotition stories; when both are

admissible, hardly any quotitions are constructed. (Bell, Fischbein and

Greer, 1984.)

Extending the Classification: Change of Size and Mixture Problems

Change of size situations, which include problems about maps and

scale drawings, involve the comparison of two related objects, which may

be measured in the same or different units. It might be assumed that in

these cases the natural multiplier is the scale factor; but our previous

work suggests that at least in cases where the two objects are measured in

different units, the within-measure relation might be preferred. Our

recent experiments show that this is indeed so. When the same units are

used, the multiplicand is the measure of the original object, and the

multiplier is the scale factor, but with different units, the roles are

reversed. (Bell, Greer, Grimison & Mangen, in press.)

Mixture problems constitute another type. Again, the two

constituents of each mixture may be measured in the same or different

units. We know that when both are in the same units (eg. spoonfuls of

lemon and of sugar) there is a strong tendency to work within mixture

(Karplus et a1.,1983). Our experiment shows that with different units, the

within-measure relation is preferred.

Comparison of Estimation and Choice of Operation Forms

In our most recent experiment, half the students were required to

respond by choosing the operation, the other half by making an estimate

of the answer. Estimating the answer was easier than choosing the

203

'206



operation for division, and for multiplication by a number less than 1.

For multiplication by numbers substantially greater than 1, choosing the

operation was easier. We hypothesise that the easier estimates arise

because they can be made by a semi-qualitative comparison of sizes; the

harder ones demand explicit recognition of the operation so that

multiplication table knowledge can be drawn upon.
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CHILDREN'S PERCEPTIONS OF MULTIPLICATION
ACROSS PICTORIAL MODELS

Candice Beattys, Kathleen Shay, Reginald Luke

Center for Math, Science, and Computer Education
Rutgers University

Children's perceptions of multiplicative structure in
pictorial situations were examined in forty-eight
interviews. Children made mathematical and cognitive
distinctions among representations. Responses indicated
the availability of a variety of representations for
multiplication, with a median of 3.5 representations for
each picture.

Multiplication and related multiplicative structures become increasingly

important to children's mathematical development in the middle grades. The shift

from additive structures to multiplicative structures precipitates, as Hiebert and Behr

(1988) noted, a change in the nature and representation of number. With the onset

of multiplicative concepts, the nature of the unit becomes associated with multiple

entities (Steffe, 1988). Understanding of multiplicative structures requires another

critical understanding - a change in referents of numbers (Schwartz, 1988).

The fact that these conceptual understandings are considerably important is

evident in the substantive research on dimensional analysis (Vergnaud, 1983;

Schwartz, 1988), mathematical constructs and numerical values (Bell, Fischbein, &

Greer, 1984), and textual analysis (Nesher, 1988).

Within a problem solving context, Nesher substantiated the importance of

textual analysis and imagining a situation. In contrast to word problems, where the

situation has to be imagined, we were interested in observing what children
understand about multiplication from situations which are explicit. We suggest
that, for any child, a variety of visual models for multiplication may have been
developed in cognitive schemes. When presented with situations and questions

requiring application of some multiplicative scheme, the child matches internal and

external representations, based on his conceptual requisites. Resulting from this
matching, one or more of these internal representations are instantiated.

As an initial investigation of this aspect of multiplicative scheme, we first
tried to identify which internal models are available to children and for which of
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the designated situations they apply any of these models. Specifically, an interview

was designed using static pictures (Beattys & Maher, 1989). Consistent with
Lesh's description (1988), these pictures were chosen to allow the child to clarify

ideas, to elaborate on aspects of the picture that illustrate, in this case, multiplicative

relationships. In this context, certain questions were considered:

Given a range of situations visually different in terms of multiplicative

representation, do children perceive any of them as related to particular
multiplicative models?

In cases where they identify a picture as multiplicative, are they able to relate

elements of the picture with appropriate referents of numbers?

This paper will address these questions by describing patterns and
variations in children's multiplicative interpretation across pictorial representations.

Design

Forty-eight interviews were conducted with fourth through sixth grade
children (9-12 yrs.) from a cross section of an urban population so that children

from various socioeconomic and ethnic groups were represented.

The Interview Five models, or representations, for multiplication (area
[A], Cartesian product [CP], discrete array [DA], equal grouping [EG], and linear

[L]) were pictorially represented using ten pictures. Two other pictures were
included as distractors. See Figure 1.)
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The format of the interview required the child to: pretend to be a teacher

who wants to explain multiplication to second graders, select pictures appropriate

for teaching multiplication, and then relate these to any symbolic notations they

make. For the pictures that were not selected, the child gave a reason for rejecting

it.

Based on analysis of responses obtained in a pilot study, a coding sheet was

designed in a matrix format so that for each picture, responses were noted in the

cell(s) corresponding to the type of multiplicative model the child identified.
Descriptors of a range of responses were defined for each model and classification

was based on children's responses which were written, spoken, or motioned.
Additionally, the authors agreed on those models which were considered
appropriate for each picture. Every interview was videotaped and coded data from

the matrices were transferred to tables to allow for analyses of general trends as

well as individual patterns of response.

Results

Responses indicate the availability of a variety of internal models for
multiplication. Table 1 shows the range of children's correct representational
responses to pictures by multiplicative model. The appropriate models for each

picture were boxed in this table.

Generally speaking, children's match between pictures and appropriate
models was a good fit. Overall, the success rates varied between 0 and .93, with a

median of 3.5 representations for each appropriate picture.

Of the pictures identified for multiplicative structures, the egg cartons
picture was identified with the fewest (2) representations as well as the greatest
number of appropriate explanations of multiplication. Three models were
suggested for the footprints, gingerbread cookies, and the donuts pictures; there

were four models suggested for the remaining seven multiplicative pictures.

The use of equal grouping and repeated addition models extended to nearly

all multiplicative situations. As anticipated, equal grouping was the predominant

mode of representation in overall analysis. However, children's responses
indicated that they made mathematical and cognitive distinctions between repeated

addition and equal grouping models. Repeated addition was suggested with only

symbolic references and offered as an alternative to other models including equal
grouping.
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With different scales, distinctions were made in many of these children's

linear interpretations of number line. For the 16 number line, a reoccurring
response was to identify its use with addition.

Pictures included as distractors were often altered to allow for correct
application of multiplicative elements. In cases where this adjustment occurred, the

modification enabled all but one child to produce an equal grouping model for
multiplication.

Overall, the differences among grade levels were minimal. The greatest

variability in responses was suggested by fourth graders. Sixth graders
demonstrated the most consistent use of one representation, equal grouping. The

greatest disparity among grade levels was for the Cartesian products; sixth graders

were significantly more successful than children in earlier grades.

In terms of the referents of numbers, children were most successful in
identifying ExI situations [See Note 1] with equal grouping representations. Many

children seemed to recognize multiplicative situations with the number line and

array models, but had trouble connecting written symbols with referents in the

picture. A few children successfully identified the two ExE situations, area and
Cartesian products.

Table 2 shows the individual performance in terms of the representations

applied by five students. In this table the number of correct responses for a given

model are identified. Pictures which were identified correctly with more than one

model are underlined and included in totals.

Table 2
Name (Grade)

Summary of Individual Representations for Pictures
No. of Rgps, RA EG DA A L CP Pictures (Correctl

Gilbert (4) 5 3 4 1 1 2 ABCDE U
Jack (5) 4 3 7 1 2 ABCDEFGHJI
Ellen (5) 4 5 6 1 1 AB EFQ, LI

Robert (5) 2 1 3 DE G J
Verna (6) 3 1 7 1 AB DEFa U

Responses of children identified in Table 2 illustrate the variations in

responses when individual performances are considered. Childen such as Jack,

Robert, and Verna were most successful in recognizing multiplicative structures in

situations in which they could apply a particular scheme. The same is true for

Ellen, but to a lesser extent. Though it was not suggested in the protocol, Gilbert
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and Ellen offered multiple approaches [representations] for presenting a few of

these pictorial situations. This again is true for Jack and Verna, but in each of these

cases the multiple representations always included their dominant representational

model. Verna's responses were, in a sense, typical of responses recorded for most

other sixth graders - equal grouping was her predominant representational model.

Discussion

If we consider problem solving as pertaining to the interpretation of the

problem, the representation of the situation, and the procedures applied to both,

then it becomes apparent why it is difficult to isolate the child's representation.

Further, children are often unaware of their own representations of the situation.

This paper describes results of interviews developed to explicitly study children's

application of multiplicative structures to representations of situations.

Children made mathematical and cognitive distinctions among pictorial

situations. There is evidence that, for most of these children, a variety of
representations exist, and when presented with a situation, they select one
representation which they consider appropriate for the situation. Many children's

correct representational responses were consistent with the structure of the pictorial

situations. Some children repeatedly demonstrated representations that did not
correspond to the structure of the pictorial situation, but rather related to an apparent

internal representation.

Results indicate great variation in the ways that children interpret pictorial

situations. While a sampling of children demonstrated the availability of more than

one scheme for multiplication, a more detailed look at individual response patterns

might indicate more clearly how internal representations influence a child's ability to

attend to a multiplicative situation. Work is in progress to address this issue as well

as other related issue.

Notes

Kaput (1986) abbreviates the definition of Schwartz's notation as follows:
extensive quantities denote the existence of a particular entity; intensive quantities

can be understood as rates. 'ExI' is extensive quantity times intensive quantity,

'ExE' is extensive quantity times extensive quantity.
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PRESERVICE ELEMENTARY TEACHERS' UNDERSTANDING OF
PROPORTIONAL REASONING MISSING VALUE PROBLEMS

Nadine S. Bezuk
San Diego State University

This study examined the quality of preservice elementary
teachers' understanding of missing value proportional reasoning
word problems. This report focuses on teachers' understandings
of solution strategies, including their ability to explain these
strategies conceptually (why it works) rather than merely
procedurally (how it works). Many of the preservice teachers in
this study had only a procedural understanding of these problem
situations.

Researchers have examined adolescents' achievement and use of solution strategies (for

example, Karp lus, Pulos, and Stage, 1983a & b; Bezuk, 1986) on proportional reasoning word

problems. These investigations have recently begun to be extended to preservice and inservice

elementary teachers (Bezuk, 1988). These findings indicate that the type of numeric ratio affects

teachers' use of solution strategies in solving proportional reasoning problems, especially their use

of the unit rate and factor of change strategies and the cross multiplication algorithm. Also, many

elementary school teachers have more than one solution strategy in their repertoire and are able to

examine problem characteristics and choose an appropriate strategy based on those findings.

Teachers' understanding of the strategies they use is another important component of their ability

to effectively teach these strategies. This research examined the quality of teachers' understanding

of various methods of solving proportional reasoning word problems and these teachers' ideas on

teaching this topic.

Shulman (1987) noted that research-based knowledge of teachers' understanding of content

is at the very heart of his definition of needed pedagogical content knowledge. Pedagogical content

knowledge is "the capacity of a teacher to transform the content knowledge he or she possesses

into forms that are pedagogically powerful and yet adaptive to the variations in ability and

background presented by the students (Shulman, 1987, p. 15). It also includes an understanding of

factors affecting the learning of specific topics and includes "knowledge of the most useful forms

of representation of those ideas, the most powerful analogies, illustrations, examples,

explanations, and demonstrations--in a word, the ways of representing and formulating the subject

that make it comprehensible to others" (Shulman, 1986, p. 9).

Pedagogical content knowledge of proportional-reasoning includes (but is certainly not

limited to) the following: (1) awareness of types of problems, such as missing value and

comparison problems, and the varying degrees of difficulty of each type, (2) awareness of types of

problems settings or contexts, such as buying, speed, mixture, density, and consumption, (3)

awareness of and ability to use various solution strategies for solving proportional reasoning word
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problems, such as those listed in Table 1, (4) awareness of the relationship between the type of

numeric ratio (see Table 2) and the ease of use of various strategies (e.g., Bezuk, 1988), (5)

methods of including these topics in instruction, and (6) awareness of common student

misconceptions (e.g., Hart, 1981). The study reported here provides more information regarding

the degree and quality of the pedagogical content knowledge of prospective elementary teachers.

METHOD

The subjects of this study were 20 preservice elementary teachers who were midway in a

fifth-year teacher preparation program. These preservice teachers had recently completed all but one

hour of a forty-eight-hour-long mathematics methods course taught by this investigator.

Proportional reasoning had not been discussed in class; methods for teaching proportional

reasoning were covered in the remaining hour of the course which was held following the

completion of the interviews described herein. Each subject took a 24-item written test of

proportional reasoning ability, each problem containing one of four types of numeric ratios and

using a buying context.. The four types of numeric ratios were integral ratios both between and

within rate pairs (referred to as "Both Integer"), integral ratios within rate pairs ("Integers Within"),

integral ratios between rate pairs ("Integers Between"), and no integral ratios ("Non-integer").

These categories are those used by Karplus et al. (e.g., 1983b) throughout their work. Table 1

illustrates the problem setting and types of numeric ratios used in this study.

Table 1 Types of Numeric Ratios

Sample problem: Ann and Kathy each bought the same kind of bubble gum at the same store.
Ann
pay?

1.

bought 2 pieces of gum for 6 cents. If Kathy bought

Both Integer

8 pieces of gum, how much did she

(24 cents)2 pieces for 6 cents 8 pieces for how much?

2. Jntegers Within Rate Pairs:
2 pieces for 6 cents. 5 pieces for how much? (15 cents)

3. Jntegers Between Rate Pairs:
2 pieces for 3 cents. 8 pieces for how much? (12 cents)

4. Non-Integer
6 pieces for 10 cents. 9 pieces for how much? (15 cents)

Scoring of the tests included the classification of the strategy used to solve the problem. These

data are reported elsewhere (Bezuk, 1988).

These teachers were then individually interviewed in order to gain greater insight into the

solution strategies used and their understanding of proportional reasoning situations. The
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interviews consisted of several parts: the subjects explained how they solved several different

problems from the written test, were shown at least three other methods for solving the same

problems and were asked to evaluate these methods, and were asked to solve anther problem in as

many ways as they could. These student teachers were also asked several questions about teaching

proportional reasoning to children: what parts might be harder or easier for student to understand,

what parts might be harder or easier for them to teach, what manipulatives, problem settings,

and/or activities they might use to teach this topic, and what solution strategies (and in what order)

they would present when teaching this topic. The solution strategies shown are an expansion of

the strategy categories used by several other researchers (Heller et al., 1985, Karplus et al., 1983b,

and Noelting, 1980). Table 2 presents examples of each of these seven strategy types.

Table 2 Examples of Each Strategy Type

Example problem: Ann and Kathy each bought the same kind of gum at the same store. Ann
bought 2 pieces of gum for 6 cents. If Kathy bought 8 pieces, how much did she pay?

1. Unit rate
Each piece costs 3 cents, so 8 pieces will cost 24 cents.

8 pieces * 3 cents/piece = 24 cents
2. Factor of change

Kathy bought 4 times as much gum as Ann, so Kathy should pay 4 times as much.

4 * 6 cents = 24 cents
3. Cross multiplication algorithm

2 pieces = 8 pieces
6 cents x cents

2 pieces * x cents = 6 pieces * 8 cents
2x = 48
x = 24 cents

4. Generate pairs
2 pieces for 6 cents
4 pieces for 12 cents
6 pieces for 18 cents
8 pieces for 24 cents

5. Equivalent fractions
2_ 3 = a
6 * 4 = 24

6. Fqpivalence class
2 = 4 = f = a
6 12 18 24

7. AdditivQ
Ann paid 4 cents more than the number of pieces she bought, so Kathy must have paid 4
cents more than the number of pieces she bought.

2 + 4 = 6 cents, so
8 + 4 = 12 cents. (incorrect strategy)
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RESULTS

Evaluation of Strategies

Subjects were shown examples of problems solved by seventh grade students using

various solution strategies. These problems were the same problems that the student teachers

solved on the written test. The following section describes the student teachers' analyses and

opinions of these strategies.

Half of the twenty subjects commented on the unit rate method. Their comments were

very positive: "It's easiest to understand"; "Unit rate is easier. Good way to do it also."; and

"That's fine. It's easy to do the mental math required to do it. It's real obvious.".

Fourteen subjects commented on the factor of change method. This strategy was not

as well-received as the unit rate method. The following are some of the comments: "Wow- very

interesting. It works. When numbers get messier, it would be a lot more confusing. "; "For

heaven's sake. My goodness. How old was this child? Did they get special training?"; "A little

confusing; a longer process--though only 2 steps, it seems harder to explain."; and "I don't even

know if I understand what she did. It doesn't seem to me as clear as unit rate."

Twelve subjects commented on the cross multiplication algorithm. This strategy

was not as well-received as the unit rate method. The following are some of the comments: "It's

easiest to comprehend.% "It's more efficient; not as many things to think about. "; "This will

eventually help them in algebra. I would use this. This is foolproof."; "I would have never

thought of this one. I don't think kids could understand this. "; and "I see them getting confused

when you flip the reciprocal. I like equivalent fractions better than cross multiplication

algorithm."

Four student teachers thought the cross multiplication algorithm was an incorrect method.

One student teacher commented that it "works for some numbers but not for all." She felt that

there was "no need to introduce this method."

Eighty percent of the subjects commented on the generate pairs strategy. Comments

were bimodal. Several subjects (9 out of 16) commented on the limitations of this method:

"Very, very confusing--too many steps." and "Generate pairs is time-consuming, Throw this

out.". However, several other subjects (7 out of 16) made very positive comments: "Makes

sense. I can see how kids make lists."; "This is excellent for teaching. When children see a

pattern, the concept is easier to use." ; and "It's a lot like making equivalent fractions.",

recognizing that fractions formed from the pairs generated are equivalent.

Sixty percent of the subjects commented on the equivalent fractions strategy.

Opinions of his strategy varied more than any other strategy. Some student teachers thought it

was wonderful (e.g., "quickest, fastest , easiest, and fewest calculations." Some thought it was
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adequate but cumbersome (e.g., "makes sense but I think it's more work setting it up this way

than the other way. (unit rate).". Other students were concerned about the general difficulty of

fraction concepts (e.g., "this would be more difficult; fractions are harder because it deals with

equivalence.").

Most subjects (18 out of 20) commented on the additive strategy, which is an incorrect

strategy. All but two of the subjects stated that this method was wrong. The remaining subjects

either weren't certain that the method was incorrect or did not express themselves well (e.g., "kind

of like what I do but I multiply.: and "I can't figure it out. I can't explain it.").

Understanding of the cross multiplication algorithm

Student teachers were asked how they would explain to students why the cross

multiplication algorithm works. Table 3 shows categories of their responses.

Table 3: Explanations of why the cross multiplication algorithm works

Fractions 7
Algebraic 3
Rote, procedural manner 4
Don't know; no idea 6

Several student teachers saw a connection with fractions, especially to equivalent

fractions: "We're setting up equivalent fractions. What I do to the top I have to do to the

bottom."; "They're equivalent fractions, but I don't know why."; and "When numbers are

multiplied cross ways, they equal each other. This would be a good check for equivalent

fractions." Subjects who used an algebraic-type explanation referred on operating on both sides of

an equation: "This works because it has to do with one. You have to do the same thing to both

sides of the equation."; and "What you do to one side, you have to do to the other. When you do

that, it comes out." Other subjects only uses a rote explanation: "I just remember A is to B as C

is to D. A. xD=Bx C. I don't remember the rationale. I was re-taught this over and over.".

And other subjects did not know why the algorithm works: "I don't know why, but it was taught

that way."; "The teachers' manual doesn't say why."; "I don't know if I know why this works.

Kids want to know why and I couldn't explain."; and "The cross multiplication algorithm doesn't

teach for meaning. It means something to me but I can't tell you how to do it. Even though both

the equivalent fractions explanation and the algebraic explanations could be correct, none of the

subjects was able to explain in detail either of these reasons correctly.
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DISCUSSION

This investigation revealed that many preservice elementary teachers have only a

procedural understanding of proportional reasoning missing value situations and methods of

solving such problems. Most of them are unable to explain why the standard method, the cross

multiplication algorithm, worked. Many of the student teachers had a vague idea that the reason

was related to either equivalent fraction or algebraic notions, but none could piece it together. One

wonders how these teachers will be able to teach effectively when they are still struggling with

their own understandings.

It is the opinion of this researcher that teacher education programs need to focus on

developing understanding of concepts in prospective teachers. Merely being able to produce a

correct answer is not adequate, if these teachers are then expected to go into the classroom and

assist students in learning concepts as well as procedures. It seems clear that the development of

an understanding of mathematics concepts must be a priority of faculty involved in teacher

preparation.

The influence of the factors discussed herein on teachers' classroom performance in

teaching proportional reasoning and ultimately on their students' performance is a question of

interest which warrants further study.
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USING RESEARCH IN RATIONAL NUMBER LEARNING
TO STUDY INTERMEDIATE TEACHERS' PEDAGOGICAL KNOWLEDGE

Robert E. Orton and Thomas R. Post
University of Minnesota

Merlyn J. Behr
Northern Illinois University

Richard A. Lesh
WICAT Systems

Intermediate teachers' understandings of rational number concepts
are examined using the "practical argument technique". This
involves reconstructing teachers' reasoning as a series of premises
whose conclusions is an action or intention to act. This technique
is illustrated by studying a teacher's response to a question about
how a student would compare 3/4 and 3/5. The practical argument
analysis shows in what way the teacher's reasoning is or is not in
harmony with what is known about the learning of rational
numbers.

The goal of this study is to use results from cognitive studies of rational

number learning as a basis for examining intermediate teachers' pedagogical

knowledge. More generally, the goal is to "reap some fruits" from studies of the

learning of mathematics to help better understand the teaching of mathematics

(Romberg & Carpenter, 1986). The research base for the learning of mathematics

will be results from the Rational Number Project, abbreviated RNP (Behr, Lesh,

& Post, 1979 -). Teachers' understanding of fundamental rational number concepts

such as order and equivalence, their notions of the concept of unit, their facility

in using representations in discussing rational number ideas, and their ability to

form a coherent, rational explanation all fall within the scope of the inquiry. This

paper will describe the framework for relating the research base of the RNP to

teacher's knowledge and will illustrate this framework using one example.

THEORETICAL FRAMEWORK

A basic assumption underlying this inquiry is that a knowledgeable teacher

knows how her subject matter is learned (Dewey, 1902, 1916; Shulman, 1987).

Dewey distinguishes the logical ordering of a subject matter from the psychological

nature of its genesis and argues that teachers must be intimately acquainted with
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the latter. For the teacher, the subject matter "needs to be psychologized; turned

over, translated into the immediate and individual experiencing within which it has

its origin and significance" (Dewey, 1902, p. 22, Dewey's italics). In more modern

language, Shulman speaks of the teacher as knowing how to interpret, express, or

represent the subject matter in a way that students can understand it (Shulman,

1987). This notion of a "psychologized" subject matter will be used as an ideal for

conceptualizing teachers' knowledge of a content area.

Cognitive research in subject areas such as science and mathematics has lead

to several results as to how these subject matters are learned (Resnick, 1983).

These results might be used to "psychologize" teachers' knowledge of these subjects

and improve the teaching of science and mathematics. At the National Center for

Research in Mathematical Sciences Education, work is underway to use knowledge

as to how children learn addition and subtraction concepts to build up elementary

teachers' pedagogical content knowledge (Carpenter et. al., 1988; Peterson et. al.,

in press). A knowledgeable teacher, in this approach, would use what is known

about the learning of addition and subtraction concepts in the instruction of her

children. Initial results have indicated that student achievement is greater for those

teachers whose practices and beliefs are in greater harmony with the research

position (Peterson et. al., in press).

Though much is known about the learning of school subjects, by and large

this research knowledge is in the hands of specialists such as psychologists and

mathematics educators rather than classroom teachers. A model for relating

research knowledge and the knowledge used by classroom teachers has been

explained by Green (1976) and Fenstermacher (1986, 1987). The underlying

assumption of this model is that teachers are rational agents, and that therefore

their behavior needs to be understood in a way that would make sense to both the

teachers and researchers who study teaching. To "make sense" of teachers' actions,

Green and Fenstermacher use a device which was first used by Aristotle in his

analysis of human behavior. This device is the "practical argument", a syllogism
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whose conclusion is an action or an intention to act. Fenstermacher gives the

following example of a practical argument for a teacher making the decision to

organize her classroom according to the principles of direct instruction:

As a teacher, I want to teach in ways that yield as much student learning
as possible.

Well-managed classrooms yield gains in learning.

Direct instruction is a proven way to manage classrooms.

My students and I are together in this classroom.

ACTION: I am organizing my class according to the principles of direct
instruction (Fenstermacher, 1986, p. 43).

An example of a practical argument, taken not from research in direct

instruction but from research in the cognitive learning of addition and subtraction

concepts, might be reconstructed as follows:

"[C]hildren invent a great deal of their own mathematics and... they
come to school with well developed informal systems of
mathematics" (Romberg & Carpenter, 1986, p. 853).

"Children's invented strategies for solving addition and subtraction
problems are frequently more efficient and more conceptually based
than the mechanical procedures included in many mathematics
programs" (Romberg & Carpenter, 1986, p. 855).

I want my students to develop structures for solving addition and
subtraction problems which are efficient and conceptually based.

ACTION: I attempt to build upon students informal structures when
teaching addition and subtraction concepts.

A practical argument is essentially an ideal or limiting case of the type of

reasoning that one would expect or hope from any person whose actions are guided

by reasons. If a teacher's knowledge can be reconstructed as a practical argument

whose premises are based on results from cognitive theory, then one might say that

the teacher has psychologized her understanding of the subject matter (cf., Morine-

Dershimer, 1987).

METHODOLOGY AND DATA SOURCE

The Rational Number Project (RNP) has provided a map of the
psychological terrain of the learning of rational numbers (cf., Post et. al., 1985;
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1988). This research shows that the learning of rational number concepts hinges

on central ideas, such the concepts of order, equivalence, and unit, as well as the

notion that translation among different representations or embodiments of these

concepts facilitates understanding (Post et. al., 1985; Lesh et. al., 1987). These

results from the RNP can be used as a research base for investigating the degree

to which teachers' knowledge is "psychologized".

Two hundred thirty eight intermediate teachers from two midwestern sites

took a battery of tests in connection with a NSF project to generate profiles of

mathematical understanding for teachers (Post et. al., 1988). The questions that

were asked follow from previous work conducted by the RNP in connection with

students. However, the questions were asked from the point of view of the teacher

responding like a hypothetical student or explaining a problem to a hypothetical

student. In one task, for example, teachers were asked how students would solve

a series of ordering problems that involved rational numbers. For example,

teachers were asked how students would answer the questions: "What is larger, 3/4

or 3/5". Then, in later questions, teachers were confronted with erroneous

responses that students might make to the comparison problem and then asked how

they would respond. In the preceding example, teachers were asked to respond to

a student who argued: "3/4 is less than 3/5 because there are less pieces".

A PRACTICAL ARGUMENT ANALYSIS OF ONE RESPONSE

When asked how a child who understood fractions would compare 3/4 and

3/5, one teacher responded as follows:

They'd work it out in equivalent fractions. They would multiply.
The numerators are the same and they know if you multiply 3 by
a higher number [5, it] would be larger than 3 times 4.

One of the main assumptions that the teacher appears to be making is that children

who understand rational number concepts would compare 3/4 and 3/5 by finding

a common denominator. What is of interest are the implications of this assumption

for the teaching of mathematics.. How might this assumption figure into a practical

argument that would guide the teacher's actions?
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It seems plausible that this teacher's actions could be guided by the

following argument.

1. I want my students to "understand" how to compare fractions.

2. Students who "understand" how to compare fractions use the common
denominator procedure.

Action: I teach my students the common denominator procedure for
comparing fractions.

This is not to say that the teacher would actually engage in this linear reasoning in

the classroom. The point is that this practical argument might be used by the

teacher to "make sense" of a teaching decision, if she were asked to do so. Premise

2 would be the cornerstone for a teaching decision.

Premise 2 can be examined more closely for a possible fit or misfit with the

research base generated by the RNP. It is possible to imagine a hypothetical

situation where this premise would be very reasonable. For example, if human

beings thought within a computer language such as BASIC, then it might make

sense, pedagogically, to equate "understanding how to compare fractions" with

"using the common denominator procedure". A BASIC program that compared

fractions using the common denominator procedure would be simple, relatively fast,

and efficient. A teacher might be well advised, in this hypothetical case, to

"program" the common denominator procedure in her students.

However, a BASIC common denominator program would do a poor job of

simulating the way many children compare fractions. Children observed in the

RNP, for example, would often solve this or similar comparison problems by noting

that, for a given unit, 4ths are larger than 5ths. Therefore 3/4 is larger than 3/5

(cf. Behr & Post, 1987). Premise 2 indicates a reliance on a formal procedure

(finding common denominators) when a less formal observation (cutting a unit into

four pieces provides larger pieces than cutting the same unit into five pieces)

would suffice. It could be argued that premise 2 is false, if the notion of

"understanding how to compare fractions" is the same as that held by many

mathematics educators.
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The conclusion of the practical argument is also problematic. Research

conducted by the RNP has found that children often do not have a workable

concept of rational number size. Though the common denominator procedure will

always yield two fractions that can be easily compared, this algorithm does not

necessarily promote an understanding of the size of the rational numbers.

Performing the procedure becomes a substitute for thinking about (or estimating)

the relative sizes of the rational numbers. Put another way, "an interest in the

formal apprehension of symbols and their memorized reproduction" becoming "a

substitute for the original and vital interest in reality" (Dewey, 1902, p. 28).

Overreliance on these formal procedures instills in the child a mindless, factory-

assembly mentality, takes away from her the spirit of a democratic education, and

promotes in her the idea that mathematics is something mysterious whose power

resides in authority rather than in her inventive powers (a paraphrase of Dewey,

1902; 1916, Ch. XIV).

CONCLUSION

The research base generated by the RNP can be used to examine and

conceptualize the pedagogical content knowledge of intermediate teachers.

Reconstructing teachers' responses to certain tasks as practical arguments can show

to what extent these teachers have a "psychologized" understanding of their content

area. It is hoped that this line of inquiry might lead to a better understanding of

ways to relate the learning of mathematics with its teaching.
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THE HISTORICAL DEVELOPMENT OF LOGARITHMS AND
IMPLICATIONS FOR THE STUDY OF MULTIPLICATIVE

STRUCTURES

Erick Smith and Jere Confrey
Cornell University

This investigation into the historical traditions that led up to the
invention of logarithms has offered new evidence of conceptions of
multiplicative structures based on proportional change which are
independent of properties of addition. This work should enrich and
challenge current conceptual work on the development of concepts of
multiplication in elementary and middle school grades. A longer
version of this paper is available from the authors.

INTRODUCTION
Research in the area of multiplicative structures has typically modelled
multiplication either as a form of repeated addition (e.g. Fischbein, 1983) or of

simple proportion (e.g. Vergnaud, 1988). In both cases the relationship between

variables is linear, and thus additive, i.e. additive changes in one variable
correspond to additive changes in the other. Thus, we would claim that both models

are built on an additive model of multiplication. Confrey (1988, 1989) has
conjectured that in many situations modelled as repeated multiplication, e.g.
exponentially or logarithmically, multiplication is a primitive operation that does not

neet to be built from additive models. These multiplicative structures, which she has

called splitting structures, can be established independently of counting structures

and allow the density of the rational numbers to be constructed beginning with the

unit. This conjecture has motivated our interest in the history of geometric series

and the development of logarithms and it is within this framework that this
historical study contributes to our understanding of multiplicative structures.

THE ROLE OF REPRESENTATIONS
An important aspect of this investigation involves the changing nature of
mathematical expressions which has occurred during the last four hundred years.

Much of modern mathematics is dominated by concepts of function where one

variable is typically expressed as a mathematical "function" of one or more others.

For example, in a situation where population size, P, is modelled as an exponential

function of time, t, the standard functional representation would be P=Poat. This

relationship might, however, also be represented in terms of how P changes for
fixed time periods: Pn=aPn_i , emphasizing the constant .multiplicative rate of
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change; or it may be represented in ways that emphasize the isomorphic relationship

between population and time, i.e. additive changes in time correspond to
multiplicative changes in population: [(ta-tb)=(tg-tr)] <=> [(Pa/Pb) = Wed].
Although the development of the function concept is often seen merely as a natural

progression allowing computational and theoretical advances in mathematics, it also

can encourage a particular way of looking at and solving mathematical problems.

TRADITIONS LEADING TO NAPIER
From the time of Aristotle through the Middle Ages, mathematical theories had

been built on proportional relationships between various quantities, rather than

functional equality. The use of proportional relationships between structures places

the emphasis on a comparison of how change occurs within structures, with little

concern for correlating values between structures. Thus the equation
A = kr2 is only useful if it is known that k=it, for that is the value that allows one to

predict area from a given radius, or vice-versa. In the proportional relationship,

A2:A1 r22:r12, there is no correlation between values, but only between how

changes in area correspond to changes in the (square on the) radius. Likewise,
P=Poat is useful only if one has a value for 'a' and a value for Po. The proportional

(or isomorphic) form, [(to-tm)=(tg-tr)] <=> [(Po/Pm) = (Pq/C9], is a statement that

additive changes in time correspond to multiplicative changes in population, and is

independent of any particular relationship between a value oft and a value of P.1

Geometric and Arithmetic Series
Since the time of Archimedes, it had been recognized that when arithmetic and

geometric series were juxtaposed, addition in the arithmetic series corresponded to

multiplication in the geometric series. Stifel, in the sixteenth century, was

apparently the first to extend these series to include fractional values in the
geometric series with corresponding negative values in the arithmetic series (Smith,

1915, p.86). Thus one of Stifels tables was:

-3 -2 -1 0 1 2 3 4 5 6

1/8 1/4 1/2 1 2 4 8 16 32 64

1 Thus transformations on a structure that do not change the relationship
between elements in the structure will have no effect on the proportional
representation.
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Although mathematician's working in this tradition did everything but invent

log tables (Smith, 1915), they were hindered in this latter task by two factors: first,

by concentrating on geometric series, they always defined a system in terms of
discrete powers of a specified ratio, and thus, second, had no way of visualizing

the process by which the entries in the geometric series would be space at equal

arithmetic intervals, an essential component in creating a true log table. Thus, in this

tradition, Burgi, a contemporary of Napier, published extensive tables of powers

of 1.0001 (Whiteside, 1969). Since his intent, that of making calculation easier,

was the same as Napier's, he is often considered a co-inventer of logarithms, but

his apparent lack of the concept of continuity in the geometric world, thus
preventing equal spacing of entries in his geometric table, was conceptually far
different from that of Napier.

The World of Ratio: A Multiplicative Continuum
In the thirteenth and fourteenth centuries, two mathematician's, Thomas of

Bradwardine (Crosby, 1961) and Nicole Oresme (Grant, 1966), working on

Aristotelian problems relating force to velocity, posited a world in which ratios
were the primary entities, and multiplication the primary operation. Oresme defined

this world as an exact replica of the world of numbers as primary entities with

addition as the primary operation. Whereas today, we would talk about the
isomorphism between these two worlds, Oresme considers their properties almost

inherent. Thus in considering ratios, the only possible operation is multiplication.

Thus "twice" the ratio 3/4 is equivalent to applying the ratio 3/4 twice, or twice 3/4
is (3/4)*(3/4) = 9/16. Likewise, 3/4 is "half' of 9/16. Likewise to have a ratio
operate on another ratio (a ratio of ratios) is defined exponentially. As a contrast, if

the ratio 3/4 operates on the number, 16, one divides 16 into 4 arithmetic means
(each equal to 4), then adds three of them together to get 12, or 3/4 of 16 is
(3/4)*16, whereas if the ratio 3/4 operates on the ratio, 16/1, one first divides 16/1

into 4 geometric means (or takes the fourth root), 2/1, then multiplies it together 3

times. Thus 3/4 of the ratio 16/1 is 8/1, or 3/4 of 16/1 is (16/1)3/4. Oresme defines

part, parts, commensurable, and incommensurable for the multiplicative world of

ratio exactly parallel to Euclid's definitions of these terms for number in Book VII

and magnitude in Book V of the Elements. In the end, he has constructed a world

of ratio independent of counting structures, in which ratio forms a continuum, and,

in which, a full set of operations for ratios have been defined, parallel to those for

numbers.
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JOHN NAPIER AND THE INVENTION OF LOGARITHMS
Although we do not know how familiar Napier was with the work of Oresme or

Stifel, in many ways his work seems like a marriage between Oresme's world of

continuous ratios and the developing work on correspondence between arithmetic

and geometric series. To some, these worlds undoubtedly seemed
incommensurable. How could a correspondence, a discrete notion, be combined

with continuous quantity? Napier's great invention, which allowed this union, was

the creation of a geometric model in which two lines would be constructed in such a

way that additive change in one line would corresponds with proportional change

in the second. He specifies that two points will start moving at the same time and

with the same velocity. One point , the arithmetic point, will continue to move at

that velocity continuously. The second point, the geometric point, starts on the

circumference of a circlet with radius 107, and moves towards the center such that

the distance it covers in equal time periods will always be proportional to its

distance from the center.

Arithmetic poi nt = P

A' B' C' D'

Geometric Poi nt = G

R A B C D E 0

Figure 1

The top line represents the motion of the arithmetic point which has started at S

and moves from S to A', from A' to B', from B' to C', etc. in equal increments of

time. The bottom line represents the motion of the geometric point which has started

at R and moves towards the center of the circle, 0. This point moves from R to A,

from A to B, from B to C, etc in the same equal increments of time as the arithmetic

point. Thus the length of RO = 107 and the ratio of movement to distance from 0

(in a fixed time) is constant, thus RA:RO = AB:A0 = BC:B0 = CD:CO

Napier defines logs as follows: The log of the distance, G, of the geometric

point from the center after any amount of time is equal to the distance, P, the

1 Napier framed his problem within a world of sines of right triangles inscribed
in a circle of radius 107. The reasons for this are unimportant to our present
discussion
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arithmetic point has travelled in the same amount of time. Thus, In Figure 1,
log(OR) = 0; log(0A) = SA; log (OB) = SB', etc. Thus unlike modern log tables,

G decreases as P increases. The great insight of Napier was that he need not specify

the ratio of change of position of the geometric point, nor specify the units of time.

In arLy equal time periods, the distance moved will be proportional to the distance

from the center. In fact, since no discrete rate of change is specified, it is not
possible, in Napier's world, to juxtapose an arithmetic and geometric series in the

same manner as Stifel and Burgi (see Figure 2). It also makes no difference what

the initial velocities of the two points are, as long as they are the same.1 In effect,

Napier has created a continuous geometric world and juxtaposed it with a
continuous arithmetic world.

R 1 0
7 If o is known, then b can be found, for, according to

Napier's model:

Re a b
R 0 0

a Li keyise c can be found, for:

30 c0
b c0 R 0

0
0.5 1 2

Distance of Arithmetic Point from Start

Figure 2

In Figure 2, if the ratio of change of the geometric point per unit of travel by the

arithmetic point (or per unit of time) were given, then the point (1,a) could be

found, for "a" would be calculated by applying the specified ratio to 107. Once "a"

is known, as many additional equally spaced points on the arithmetic scale as
desired can be added by taking an appropriate number of geometric means on the

1 Napier did not think in terms of a "base" for his table. However, for any initial
velocity for the two points, whenever the arithmetic point moves one unit of
distance,the distance of the geometric point from the center will decrease by a
ratio equal to the 107 root of 1/e, a number only slightly less than unity. Thus
his "base" can be thought of as the 107 root of 1/e.
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geometric scale. This was the model of Stifel and Burgi, but does not create a true

log table, since the points on the geometric scale are not equally spaced.

From these initial conditions, Napier made an important observation: "A
geometrically moving point approaching a fixed one has its velocities proportionate

to its distance from the fixed one." (p.18), i.e. the velocity of the geometric point in

the model above will always be proportional to its distance from 0, which, in
modern terms, is notationally equivalent to the statement: dy/dx = ky! This
statement is made more from insight than from what we would call proof, for
Napier simply makes the argument that since, by hypothesis, in any finite time

period, the point moves a distance proportional to its distance from 0, that the
velocity in any finite time period must then be proportional to the distance from 0.

This insight gives Napier the ability to specify equally spaced points on the
geometric scale, and calculate, as accurately as desired, the matching points on the

arithmetic scale, for he now knows the velocity of the geometric point (relative to its

initial velocity) at any specified position of G. In a modern interpretation, this
means that the tangent to the curve at any point is known, and thus the secant
between any two separate points can be accurately estimated.

I n Napier's model, the slope of the tangent lines at ( 0, 1 07),

c 107 A, and B are known. Thus by interpolation of the slopes, one
can esti mate the slope of the secant between ( 0, 101) and A.
From t hi s secant, "a" can be esti mated. By continuing this

A
process, as dense a set as desired can be found of

1 07- 1 equally spaced geometric points.

107- 2

0
A

a
Distance of Arithmetic Point from Start

Figure 3

However, this is still not a log function in the modern sense, i.e. that it obeys

the "laws of logarithms". For example, we assume that log (A/13) = log (A) - log

(B). In particular, if B=1, then log(A)=log(A/1)= log (A) log (1), which can only .
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be true if log()=0. In Napier's system, log(1) is well over 107. Napier's logs
force us to think of multiplication as a 'ratio action' rather than a binary operation.

Thus in Napier's world the proportional relationship holds: A:B::C:D <=> (log(A)-

log(B))=(log(C)-log(D)). Thus to multiply 256 times 3978 is to solve the ratio
problem: 256:1::A:3978, and Napier has told us that the difference between
log(256) and log(1) is the same as the difference between log(A) and log(3978).

Thus log(A)=log(256)-log(1)+log(3978). Likewise to divide 4288 by 333 is to
solve the ratio problem: 4288:333::A:1, from which we find that: log (A) =

log(4288)-log(333)+log().

CONCLUSIONS
In looking at the work of Napier and his predecessors, we see a tradition, going

back at least to the Greeks, which saw multiplication as the primary action in certain

situations, independent of concepts of addition. Modern concepts of number line

and function, and metaphysical concepts of cause and effect have both contributed

to a reduction of interest in this area. Thus most modem research on multiplicative

structures has overlooked this tradition of multiplication as an independent structure

in favor of models based on some form of repeated addition.
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CHILDREN'S REPRESENTATIONS OF ARITHMETIC PROPERTIES
IN SMALL GROUP PROBLEM-SOLVING ACTIVITIES

Alice Alston

Center for Mathematics, Science, and Computer Education
Rutgers University

The problem-solving behavior of eleven seventh-grade children,
working together in small groups in a five session teaching
experiment within a classroom setting is described. The children
were asked to construct solutions to three problem tasks which
contained common structural elements but in each case used a
different set of concrete nonnumerical elements. Analysis of
videotapes of the sessions revealed that a variety of strategies were
used to construct solutions, that there was recognition of the
relatedness among problem representations, and that students were
able to generalize to representations of similar structures using
numbers. Analysis of interactions among members of each group
indicated that working together facilitated the problem-solving
process for individual children.

Theoretical Framework

The importance of structure, both of the concepts being understood and the

construction within the experience of the learner of a working model of those

concepts, is basic to any theory of learning (Dienes and Jeeves, 1965). One

implication of this understanding of mathematics and learning, according to Jeeves

and Greer (1983), is the importance of developing an awareness of the structural

relationships in the mathematics that is being used and an ability to recognize

structural similaritites in situations that appear on the surface to be different.
Bruner (1960) advocates learning the fundamental structure of a subject as a means

to knowledge that can be retained longer in memory, and transferred more
effectively to new learning.

A weakness in much research into the transfer of knowledge, according to

Lave (1988), is that it has occurred within a context devoid of social interaction .or

consideration of factors that motivate problem solving, presupposing that abstracted

knowledge is the context of problem solving. An alternative approach advocates that

consideration be given to learning that arises out of shared activity in which

representations of ideas are constructed and discussed (Brown, et al, 1989). This

activity is facilitated by children's working together in small groups on mathematical

tasks which provide opportunities for communicating mathematically, sharing ideas,
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developing and revising hypotheses, and defending solutions (Noddings, 1985).

Previous research analyzing small group problem-solving activities provided

examples of meaningful learning of particular mathematical structures and rich data

for consideration of the process of children's mathematical thinking (Alston and

Maher, 1988; Maher, Alston, and O'Brien, 1986).

Objectives

The objective of this study was to describe and compare the problem-solving

behaviors of children working in small groups to solve three problem tasks. Each

of the tasks offered a different concrete nonnumerical embodiment to be used to

construct models of the structure of certain properties of a binary operation on a

set of elements: namely, closure, commutativity, identity, and inverse elements.

Particular behaviors that were studied were: (1) construction, monitoring, and

revision of solutions on the basis of the concrete model, imagistic representation in

the form of charts or drawings, and/or conceptual understanding; (2) connections

among representations within and among tasks indicating recognition of structural

similarities and differences; (3) generalization to mathematical ideas involving

numbers; (4) interactions among group members and individual roles within the

group contributing to the development of solutions.

Methods and Procedures

The study was conducted in 7th grade classes in two schools, one
independent K-12 and the other a public K-8 elementary school. Five consecutive

45 minute class sessions in each of the schools provided 12 and 13 year old children

the opportunity to construct solutions to three concrete nonnumerical problem tasks

dealing with the structure of the properties of closure, commutativity, identity and

inverse.

The teachers partitioned each class into groups of two or three children for

the five sessions on the basis of similarity of ability and potential social
compatibility. Within each class two groups were randomly chosen to be videotaped

during all sessions. A study of the problem-solving behavior of eleven children,

seven boys and four girls, in four groups, two from each school, was the basis for

this paper. The two public school groups included one group of two boys (G1) and

a second of two boys and one girl (G2). The independent school groups that were

videotaped included one group of two boys and one girl (G3) and a second group

of two girls and one boy (G4). The members of each group had been a part of the

same mathematics class throughout the year and had been accustomed as a part of
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regular instruction to working in small groups to solve problems.

After the children were seated in their group, a script for each of the
problems in turn was given to each child along with sets of the objects appropriate

to the task. The children were instructed by the teacher to choose one person to act

as official recorder and to have some agreement on the responses recorded. Each

child, however, was asked to complete a problem script with his or her own ideas

about the solution which might be different. A final section on each task asked the

children to reflect on the problem solving and to note (1) what they liked and
disliked about it, and (2) what other problems or ideas, if any, were called to mind.

The directions concerning each operation were written as a part of the script

and the children were asked to demonstrate understanding of the operation before

beginning to construct solutions. The teacher was instructed to respond to questions

that sought to clarify understanding of the meaning of each operation but not to

intervene as the children constructed solutions. The children were permitted as

much time as required to complete each problem task, then returned their problem

sheets and materials to the teacher and received the set for the next task.

Transcripts of the videotapes of the five sessions for each of the four groups

of children along with observers' notes and the children's work sheets provided data

for the analysis.

The Problem Tasks

The Dolls Task: A pair of small figures, a boy and a girl, were used to enact the

elements of the set; four 180 degree rotations of these two figures taken together

from a facing front position: Both Turn, Only Boy Turn, Only Girl Turn, and

Nobody Turn. The operation of the set was defined as one rotation followed by a

second and the result is the single rotation from a facing front position that would

leave the figures in the same final position.

The Problem with Cards: A set of five cards, each with a different polygonal

shape cut out, constituted the elements of the set with the operation defined as

putting one card on top of another and the result being the shape of the hole
formed by the two cards together.

The Roads Task: The members of the set, introduced as Road Cards, were index

cards each having lines from four equally spaced beginning points on the left side

to corresponding end points on the right. The operation was introduced as one

Road Card followed by a second and the result was the single card that had the

beginning points of the first card and the end points of the second.1
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Results

Because of limitations in space, the children's mathematical behaviors are

illustrated with examples of problem-solving approaches used to construct solutions

to various parts of the problems and then summarized in Table 1. An example of

group interaction as a part of constructing a solution is then described and followed

by a summary of individual children's roles within the groups in Table 2.

All four groups were successful in completing the charts for each of the

three operations with each group relying extensively on the concrete objects to

figure out these results. Members of each of the groups, after confirming that they

were correctly performing the operation in each task, also offered results for

particular pairs of elements without first using the objects. When this occurred, the

result was justified to the rest of the group in one of several ways including: (1)

symmetry or other patterns noted in the chart (all groups), (2) function of identity

and/or inverse elements (G1, G2, G4), (3) description of geometric shape or
transformations (G3), and (4) mental predictions which were confirmed with objects

when questioned (G3). All four groups used the Road Cards to determine the

result of each possible combination for that operation.

Strategies for solving the problems about closure varied. All four of the

groups referred to the actual objects. G1 and G4 based their solutions about closure

on charts. G1 constructed new charts for the Dolls Task to determine whether

subsets of the set of four elements were closed whereas both groups continually

referred to the appropriate section of the charts in each problem. G2 and G3 both

based their arguments about closure on the importance of identity and inverse
elements with G2 referring to numbers in order to determine the function of each

element in the subgroup of two:

Cl: Nobody Turns sort of acts like zero in a problem. It's always the
original number with zero because Nobody Turns just leaves it the
way it is.

C2: It's like only having one command, right?
C3: It cancels --- It takes you where you started.
C2: No! It stays the same. It doesn't take you where you started.

Based on this discussion, G2 was successful in determining that Nobody Turns and

Only Boy Turns form a closed set, however they failed to realize that the same was

not the case for Road Cards A and B. G3 employed a similar approach but here,

as throughout their construction of solutions, considering each element from the

perspective of action or function with no comparison to numbers.
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Cl: What about (Road Cards) A and B?
C2: If we're smart, we'll refer to the chart. I think it's yes (closed)

because nothing is added. A is a constant, a preservant, neutral.
Cl: (Referring to the chart) Look B and B is C.

C2 then proceeded to list symbollically each possible pair of elements and result for

the subset and the three agreed that the subset could not be closed.

In constructing solutions to the sections of each task dealing with identity

and inverse elements and with commutativity, three of the groups referred to
properties of operations with numbers to explain different solutions. G1 discussed

whether order mattered for the dolls:

Cl: This is like the commutative property - OBT and OGT or OGT and
OBT both equal Both Turn.

C2: It's like "Please, my dear Aunt Sally" -addition is commutative.
Parentheses, multiplication, division, addition, subtraction -- Wait.
Division doesn't work.

Cl: Addition and subtraction - I don't think subtraction will work either.
It's addition and multiplication.

TABLE 1: GROUP PROS M-SOLVING BEHAVIOR$

gnaw TASK CONSTRUCTION SOLUTIONS GENERA UZATIONS
Immediate Corrected Partial Concrete Imao laic Conamtual Numbers Geometry Problems

Dolls yes no no yes yes yes yes no yes
GI Cards no yes no yes yes yes yes no yes

Roads no yes no yes yes no yes no yes

Dolls yes no no yes yes yes yes no yes
G2 Cards yes no no yes yes yes no yes no

Roads no no yes yes yes no yes yes yes

Dolls yes no no yes no no no yes no
G3 Cards no no yes yes yes no no yes no

Roads no yes no yes yes no no yes no

Dolls yes no no yes yes yes yes no yes
G4 Cards yes no no yes yes yes yes yes yes

Roads no yes no yes yes yes yes no yes

Throughout the five days as they constructed solutions to each of the three

problems all of the children were actively engaged in solving the problems although

focus varied for individuals throughout the five days. Leadership in Groups 1 and

2 was shared evenly among the members with each individual assuming at different

times the more assertive role. In Group 4 one child was noticeably quieter during

the first task with the other two both quite assertive. This child, however, was more
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vocal during the second activity and was central to the discussion on the Road Card

problem, showing the others that the chart was key to understanding the identity

and inverse relationships. Interactions among the members of Group 3 included

frequent challenges about strategies and solutions between the two boys, with the

girl contributing often but expressing frustration at the boy's arguments. She often

attempted to moderate the discussion by offering a statement of consensus. One

instance occurred as the children were completing the chart for the Road Cards:

Cl: Any card with Card A will be the same.
C2: I suppose that D to D will be A.
C3: No - D to B is A.
C2: How did you know?
C3: Because B to D is A - It's a pattern.
C2: You can't prove it. Can you give me a reason for the pattern? Unless

you have a reason, we can't just take the hypothesis and must test
each one..

Cl: We can say there seems to be a pattern - we have a hypothesis and
(the then we experiment.
girl)

This discussion with both approaches to solution was continued in attempting to

determine closure for the four Road Cards:

C3: It works because of the pattern.
C2: No - It's because every possibility is Included in these cards.

The discussion concluded with the explanation given by C2 accepted as the reason

for the group's solution.

TABLE 2: ROLE OF INDIVIDUAL WITHIN GROUP
GROUP CHILD DOLLS TASK CARDS TASK ROADS TASKE IALFM E I A L F M Z IA L
Cl CI (boy) xx x x x X xxxxxx

C2(boy)x x x x x o xxxxxo X X 0 X X' X
X X 0 X X 0

Cl(boy)xx o x x o xxoxxx xxoxxx
C2 C2(boy)xxoxxo xxoxxx xxoxxx

C3 x x o x x x x x o x x x x x o x x x

Cl (girl) x x o o x x x x x o x x x x x o x x
G3 C2(boy)xxxx o o x x x x o o x x x x o o

C3(boy)xx o o x o x x x o x o x x x o x o

n

Cl (boy) x x o x-o o xxoxoo
G4 C2 (girl) x x o o x o x x o o x x

C3 (girl) x x o x o o x x x x o o

X X 0 X 0 0
X X 0 X 0 XXXXX00

Note: E engaged, I Interacted, A a (worked) alone, L e led, F followed, M moderated (group Interaction),
x presence of behavior, o absence of behavior
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Conclusions

Although a variety of the strategies noted in the Tables were used by each

group and individuals within the groups to construct solutions, results of the
analysis indicated that particular approaches became dominant in the problem-

solving behavior of each group. G1 made continual reference to properties of
numbers, G2 and G4 based their conclusions primarily on recognized patterns, and

G3 referred frequently and almost exclusively to properties and transformation s of

physical objects. This group was unique in discussing each operation in terms of

action. The analysis also indicated that the children, even as they employed a

variety of representations in constructing solutions, did use the concrete
representation when questions of meaning arose. The particular dependence on the

Road Cards by each of the groups can perhaps be explained because that operation

was more difficult to figure out concretely and also because predictions made by

each group based on the results of the Klein group structure of the Dolls Task

proved to be false.

Examination of the data of groups of children working in regular classroom

settings suggest that the activities provided opportunities for the children to build

cognitive structures by their actions on the objects and their development of
connections among representations of the mathematical ideas.

The variety of approaches and strategies employed by individual children

and groups suggests that the tasks did provide environments in which the
understanding of each child could be developed through the group interaction.

These learning activities carried out as a part of regular classroom
instruction without direct teaching indicate the possibility of children working

together to construct multiple representations of this particular set of mathematical

ideas. One consideration for those committed to constructivist approaches to

learning and teaching mathematics is to develop similar problem tasks for a variety

of concepts and a range of cognitive abilities. Determining their overall effectiveness

as a regular part of instruction is an equally important objective for those seriously

contending with the challenge posed by the current national concern about children's

mathematical development.

1. For a complete description of the problem tasks, see Alston and Maher (1988).
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CHILDREN'S METACOGNITIVE KNOWLEDGE
ABOUT MATHEMATICS AND MATHEMATICAL PROBLEM SOLVING

Frances R. Curcio, Queens College-CUNY
Thomas C. De Franco, University of Hartford

This is the first exploratory study in a longitudinal research project
involving 20 children (10 boys, 10 girls) randomly selected from a
New York City middle school Its purpose was to examine children's
beliefs about mathematics and mathematical problem solving. Data
were collected using an interview technique. Procedures for coding
the data and establishing the reliability of the coding of the data
were designed by the researchers. The results for each interview
item were categorized in terms of person, strategy, and task
variables. The children's responses suggest that having a good
memory, perseverance, and knowledge of mathematics and studying
are important for problem solving. However, they seem to lack
confidence in their perception of their mathematical ability. They
also stated that they check their work, they think it is a good idea to
use alternative methods, and they focus on computation involved in
a problem. Furthermore, they indicated that the topic of a problem
has no bearing on their perception of whether they could solve it,
but they felt the length of a problem could affect their ability to
solve it. The concept of a "stream of beliefs" and implications for
future research are discussed.

During the past decade, researchers in mahtematics education have
expressed an interest in many aspects of mathematical problem solving. In

particular, articles have focused on various types of mathematics problems
(Frederickson, 1984), understanding cognitive proceses and affective components

involved in successful probjem solving (Buchanan, 1987; Schoenfeld, 1985), and

examining differences between successful and unsuccessful problem solvers
(De Franco, 1987).

One aspect of successful problem solving is reflective thinking which may

facilitate monitoring adn checking during a solution process (Kilpatrick 1985). In

recent years this phenomenon has been referred to as metacognition.

CONCEPTUAL FRAMEWORK

John Flavell, a cognitive psychologist, has contributed to the development of

the study of metacognition. According to him,

'Metacognition' refers to one's knowledge concerning one's own cognitive
processes and products or anything related to them...Metacognition refers,
among other things, to the active monitoring and consequent regulation and
orchestration of these processes in relation to the cognitive objects on which
they bear, usually in the service of some concrete goal or object. (1976, p.
232).
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He developed a model of cognitive monitoring which can be applied to a

variety of cognitive enterprises. Although there are four aspects of the model, this

study focused on one of them, metacognitive knowledge. Metacognitive knowledge

is similar to knowledge stored in long-term memory. It consists of beliefs about

person, strategy, and task variables and how they interact to guide or influence an

intellectual endeavor (Flavell, 1979).

Person variables are everything a person comes to realize or believe about

himself/herself in relation to his/her own cognitive processes and the problem at

hand. Strategy variables consist of approaches to be taken in attempts to resolve the

problem. Task variables consist of any information in the problem which may

activate beliefs about particular strategies or demands of the problem. In general,

these variables can guide or influence an individual to select, change, abandon, or

pursue various strategies throughout an entire solution process (Flavell, 1979).

Myers and Paris (1978) and Kruetzer, Leonard, and Flavell (1975),
employing an interview technique, studied children's awareness of person, strategy,

and task variables in relation to reading and memory performance, respectively.

Based on these results and the recommendations of other researchers (Buchanan,

1987; Frank, 1988; Lester & Garofalo, 1987; Schoenfeld, 1985), there is a need to

explore children's beliefs about mathematical problem solving.

Research Question

What are fifth graders' beliefs about mathematics and mathematical problem

solving in relation to person, strategy, and task variables?

METHOD

Subjects

TWenty fifth graders (10 boys, 10 girls) from a New York City middle school

were randomly selected to participate in the study during fall, 1986. The sample

reflects the distribution of the school population with respect to ability: 25% below

average, 50% average, and 25% above average, determined by standardized tests.

Instrument

An open-ended questionnaire was designed from the work of Myers and
Paris (1978). Based on the results of a pilot study, the questionnaire was modified

and revised. Eleven questions were designed to measure person variables, 4 were

for strategy variables, and 6 were for task variables. The questionnaire was
administered individually in an interview by a trained graduate research assistant,

who also transcribed the audiotapes.
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Data Analysis

For each question from the transcripts, responses were translated into
semantically-equivalent summaries (Myers & Paris, 1978). They were then
categorized according to variables. The reliability of the tape transcriptions and the

coding of the data was established by the researchers.

SOME RESULTS

For the person variable questions, the children's responses suggest that

having a good memory, perseverance, knowledge of mathematics, and studying are

important for success in problem solving. However, they seem to lack confidence

in their perception of their mathematical ability.

For the strategy variable questions, they indicated that they check their work,

they think it is a good idea to use alternative methods to solve a problem, and they

focus on the computation involved in solving a problem. It seems as though
"checking" is limited to reviewing the computation in the algorithm selected and it

does not include monitoring or checking for the reasonableness of an answer.

For the task variable questions, the children indicated that the topic of a

problem has no bearing on their perception of whether they could solve it, but they

felt that the length of a problem could affect their ability to solve it.

Stream of Beliefs

As the results were being examined, it seemed natural to discuss the
responses to some questions together. The term "stream of beliefs" is used to
identify a relationship between or among beliefs when it seems as though one or

more beliefs affect other beliefs.

In figure 1, there are 3 children's responses to 2 person variable questions.

The responses in Protocol A reflect a complementary stream of beliefs because each

response supports the other. The responses in Protocol B reflect a conflicting

stream of beliefs because although she trusts her memory for obtaining correct

answers, she does not feel it is important to have a good memory to solve a
problem. Although the responses in Protocol C seem to reflect a complementary

stream of beliefs, if he solely depends on his memory during problem solving, a

failure to recall necessary facts may lead to a lack of perseverance and failure.

In figure 2, there are 2 children's responses to 2 strategy variable questions.

The responses in Protocol D reflect a complementary stream of beliefs because her

comments support her belief about checking with respect to the reasonableness of

an answer. The responses in Protocol E reflect a conflicting stream of beliefs
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because she admits to checking her work for the purpose of getting the correct
answer, but she is willing to accept an unreasonable answer based on correct

computation.

FINAL REMARKS

This study was exploratory and descriptive. Its purpose was to examine fifth

graders' beliefs about mathematics and mathematical problem solving in relatio to

person, strategy, and task variables.

Since this qualitative study was dependent upon children's ability to express

themselves verbally, some information may have been inadvertently omitted or lost.

However, we believe that by interviewing children we obtained a rich source of

accurate data.

The results of this exploratory study support the need for further research.

In particular, future studies should include the examination of the relationship

between children's beliefs and their problem-solving behavior. Different aspects of

person, strategy, and task variables should be examined to study the relationship

between beliefs and behavior in a problem-solving setting. Also, longitudinal studies

should be conducted at various ages and grade levels to examine how cognitive as

well as non-cognitive factors influence individual belief systems and mathematical

performance.
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1. Do you think it is important or not so important to have a good memory in order to solve a math
problem? Why?

Protocol A°
It's important. Because if let's say
...if somebody didn't have a memory
...they couldn't answer anything.
They couldn't talk. They couldn't
read. They couldn't solve anything
...if they had a memory they could
solve everything like talk
intelligently, solve problems, solve
multiplication problems for math,
many more.

Protocol B
Well I don't think you have to
have a good memory because
you could just learn it that
year or that minute and know
what you're doing.

Protocol C
I think it's very important.
Because if you don't remember
or memorize how to solve a
math problem you won't be
able to solve it.

2. The other day I met a fifth grader who said it's important to remember certain facts to do well in math.
When you take a math test, do you or do you not trust your memory to remember important facts?
Why?

Protocol A
I trust my memory. Since my memory
takes in information, and, if I read
my mathlike my math testit's like
having a cabinet in my brain with all
these cards with mathematics signs,
with mathematics answers, Anything I
studied.

Protocol B
I do trust my memory...because
my memory...it could be the
right answer and I could get a
lot of help from that.

Protocol C
I trust my memory, most of
it. Because...it's easy when you
remember the problems as hike
division and you have to divide,
multiply and like that.

Figure 1. Sample responses to Person Variables, Questions 1 and 2.

3. When you solve a math problem, do you or do you not check your work? Why/Why not?

Protocol Da Protocol E
I check my work. Because, I, urn, I check it. Because to see if
try and get my examples right I got it right and if I got
as much as I can so that when I wrong, I'll do it again and
give them to the teacher, the see which one is right.
teachers knows that I am trying
my best and that I'm not just
putting any answer down.

4. A 5th grader was given this problem to solve: 128 children are going on a school trip. A bus can seat
40 children. How many buses are needed so that all the children can go on the trip? His/Her answer
was 3 1/5 buses. Would you give this same answer? Why/Why not? (The following work was shown
to each child:

55'fic

Protocol D
I would just put down 4 buses
because you can't really give
3 1/5 buses, so 4 buses is the
closest. Because you can't have
3 buses 'cause then you'd have more
children.' But if you have 4 buses
then all the rest of the children
can go on another bus.

40 7128
120

8
Answer: 311Y b.".$4-5

Protocol E
Well it might be wrong because
...wouldn't it be lie 3?...
no it could be right because
3 remainder 8 might be right.

aProtocols labeled with the same letter represent the same subject.
Figure 2. Sample responses to Strategy Variables, Questions 3 and 4.
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BUILDING A QUALITATIVE PERSPECTIVE
BEFORE FORMALIZING PROCEDURES:

GRAPHICAL REPRESENTATIONS AS A FOUNDATION
FOR TRIGONOMETRIC IDENTITIES

Sharon Dugdale
University of Illinois

This study compared two approaches to incorporating
graphical representations into a unit on trigonometric
identities. The first treatment supplemented a traditional
approach with related graphing activities. The second
treatment used graphical representations as the foundation for
trigonometric identities. Subjects in the second treatment
showed superior posttest performance in relating functions to
graphical representations, as well as more variety and personal
involvement in their approaches to the standard content.

Trigonometric identities are traditionally approached as exercises in

symbol manipulation. The instructional methods used in this study combined

the usual symbol manipulation work with guided activities using graphical

representations. Two conditions were compared:

I. A traditional approach to trigonometric identities,
supplemented with related graphing activities, and

2. A graphical approach, using graphical representations as a
foundation for trigonometric identities.

The study was imbedded in a normal classroom instructional sequence for

trigonometry. The subjects, 30 students in grades ten through twelve, had
completed the introductory trigonometry material from their textbook (Dolciani

& Wooton, 1980, Chapter 14) and were ready to begin identities. The textbook

material had been augmented with computer-related activities designed to

introduce the graphs of the six basic trigonometric functions, provide

experience with transformations of sine and cosine graphs, and establish

technical facility with the graphing software to be used in the experiment.

A test was given to summarize the introductory material and assess
achievement on the first chapter of trigonometry. Following this chapter test

the subjects were divided randomly into two treatment groups. One group was

assigned the Supplemented Traditional (ST) approach; the other, the Graphical

Foundation (GF) approach.

Both treatments consisted of five days of class sessions, microcomputer

laboratory activities, and homework. Microcomputer activities for both
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treatment groups were guided by activity sheets designed by the experimenter.

During the microcomputer activities, subjects in each treatment group worked

with partners of their choice, in order to encourage verbalization and facilitate
exchange of ideas and insights.

All subjects used acetate slides and overhead projector pens to draw
graphs on the microcomputer screens, as required by the activity sheets. In

general, ST subjects recorded graphs that had been plotted by the computer,

whereas GF subjects predicted graphs and used the computer to check their
predictions. The overall characteristics of the treatments. are summarized in
Table 1. A more complete description is contained in Dugdale (in press).

Table 1

Comparison of Characteristics of Treatments

Supplemented Traditional (ST)

Trigonometric identities were treated
in the traditional fashion, as .7
exercises in symbol manipulation.
Graphs were used as an additional
representation.

Symbol manipulation exercises were
preceded by a straightforward
presentation of the eight fundamental
identities and direct instruction
covering procedures to be used.

Computer activity sheets were
arranged with a worked-out example
preceding each set of exercises.
Exercises were routine repetitions of
the procedure used in the example.

Guidance provided on activity sheets
focused on what procedures subjects
should apply.

Relationships between graphs (such as
the correspondence between the zeros
of a function and the asymptotes of
its reciprocal function) were
presented, but the activities did not
require subjects to use these ideas.

Graphical Foundation (GF)

Trigonometric identities were
introduced graphically, and the usual
symbol manipulations were used to
justify the relationships evidenced
in the graphing activities.

Subjects were asked to justify
algebraically the equivalence of
functions without being instructed
how it should be done. Part of the
task was to decide what information
was applicable and how to use it.

Computer activity sheets presented
non-routine tasks, some of which
required analyzing graphic feedback
and revising functions to change
their graphs.

Guidance provided on activity sheets
focused on what questions subjects
should address.

Subjects were asked to use graphs of
functions to predict graphically the
shapes of other functions before
plotting. For example, from graphs
of y=sinx and y=cosx, subjects
figured out where y=sinx/cosx
would have zeros and asymptotes
and predicted the general shape.
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RESULTS

A posttest included two sections. The Proving Identities Section asked

subjects to prove two given identities, typical of those in the textbook exercises.

The Graphical Representations Section was a multiple-choice test requiring
subjects to choose an appropriate graph for each of eighteen given functions.

Using the previous chapter test as the covariate, analysis of covariance

was used to compare subjects' scores on each section of the posttest, and also on

three categories of items within the Graphical Representations Section. Results

are presented in Table 2.

Table 2

Results of Analysis of Covariance

Item Type Treatments Mean (SD)
Adjusted

Mean F1.26 p

Proving identities

Total Score ST 8.714 (1.899) 8.393 1.408 .246
GF 7.188 (3.082) 7.430

Graphical representations

Total Score ST 21.464 (8.763) 19.870 7.696 .010
GF 25.188 (7.101) 26.012

Basic Material ST 10.321 (4.107) 9.577 5.197 .031
GF 11.281 (2.738) 11.656

Covered, Not Basic ST 8.214 (3.720) 7.753 3.431 .075
GF 9.313 (2.323) 9.576

Non-routine Items ST 2.928 (2.433) 2.540 5.419 .028
GF 4.594 (3.018) 4.780

°For ST, n=14; for GF, n=16.

For the standard content of proving trigonometric identities, the data in

Table 2 indicate no significant difference (p=.246, a =.05). (Scores for the

Supplemented Traditional Treatment were somewhat higher than for the

Graphical Foundation Treatment on this section of the posttest, but the

difference was not statistically significant.)
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GF subjects showed significantly higher (p=.010) posttest performance on

relating trigonometric functions to their graphical representations. Further,
within the graphical representations section of the posttest, GF subjects showed:

1. Significantly higher (p=.031) performance on items requiring use
of basic material. These 7 items involved recognition of the
graphs of basic trigonometric functions and simplification of
trigonometric expressions by routine symbol manipulation.

2. Higher (though not significantly, p=.075) performance on items
requiring use of more advanced material covered by both
groups. These 6 items involved graphs of squares of basic
functions and transformations of sine and cosine functions.

3. Significantly higher (p=.028) performance on non-routine items.
These 5 items involved functions which would not conveniently
reduce by symbol manipulation to basic functions or squares of
basic functions and would not analyze readily as transformations
of sine or cosine functions.

DISCUSSION

Proving Trigonometric Identities

In approaching the symbol manipulation content, the treatments differed

in their handling of prerequisite knowledge and procedures. The ST Treatment

began with a presentation of the eight fundamental identities, thereby sorting

out for the subjects what particular subset of their knowledge they were to use.

The GF Treatment included no introductory presentation of the content to be
used, leaving the subjects to consider what of their previous knowledge could
be applicable. Five of the eight fundamental identities had been introduced in

the previous chapter in the context of defining the trigonometric functions and

expressing the relationship between the sine and cosine functions. Subjects

were already familiar with the following five identities and their restrictions:

tan

cot a

sin ce
cos OC

a cos Ce
sins

secs cos

CSC OL
sin oe

sing a + cos2 a e 1

Subjects were not familiar with the following three identities:

tan a co L a

tang + 1 sect oe 1 « cot 2 a csc2
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These last three identities are convenient, but unnecessary, because they derive

easily from the first five. Hence, the GF Treatment was not a case of putting

students into a situation for which they were unprepared and asking them to
discover or develop whatever they needed. Rather, it was a case of asking
students to apply what they already knew from another context, without telling

them what in particular to apply.

The ST Treatment included a presentation of each necessary procedure

prior to its use, so that the subjects' goal was to apply the given procedure to

the given items. The GF Treatment included no initial presentation of

procedures for proving identities, so that the subjects' goal was to devise a
convincing argument for an observed equivalence. GF subjects were asked to

justify identities without procedures given, but not without context. In

justifying what they had observed graphically to be true, subjects were expected

to understand the goal in a qualitative sense, and, hence, have a good chance of

success in formalizing their knowledge.

The initial symbol manipulation work of ST subjects was generally
cleaner and more standard than that of GS subjects. GF subjects approached
the task with more variety in their methods. For example, one GF subject

decided to justify the observed equivalences by using definitions of

trigonometric functions in terms of a right triangle with sides a, b, c, using

sinx =a /c, cosx=b/c, etc., although the two classmates with whom she was
working chose a more standard approach. By the end of the second class
session, this subject had verified to herself that her method was essentially
equivalent to what her classmates were doing and that their approach was
probably less cumbersome. Although she abandoned her initial method, it
provided some synthesis between the current topic and earlier material, and the

ownership she felt for her method was clearly important to her. Another

subject initially used the right triangle definitions, sinx=opp/hyp, cosx=adj/hyp,

etc., then changed to the method her classmates were using.

It was not expected that the GF Treatment would be more effective than

the ST Treatment in building subjects' skills with the standard content of
proving identities. A loss of instructional efficiency would not have been

surprising. However, it was anticipated that whatever loss of performance
might be evidenced in the standard content of proving identities, it would be

outweighed by improved performance in relating trigonometric functions to

their graphical representations.
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Relating Functions to Graphical Representations

ST subjects were exposed to more graphical representations than were GF

subjects (though the GF subjects did better on this section of the posttest). For

example, in drawing graphs on their acetate slides, ST subjects drew the graphs

of 18 different equations, 6 of which were on the posttest. In contrast, GF
subjects drew the graphs of only 7 equations, one of which was on the posttest.

ST subjects did routine work with many graphs, while GF subjects were
involved in more thoughtful work with fewer graphs.

There was a noticeable difference in the graphs drawn by the two groups.

ST subjects tended to produce more uniformly neat, accurate, and properly
labelled graphs on their acetate slides. In contrast, GF subjects were more
likely to produce sketchy, sometimes incomplete, graphs. ST subjects appeared

to regard their work as a finished product, while GF subjects approached the
task more as scratch work on the way to a solution.

GF subjects' inaccuracies in predicting some graphs became obvious when

these subjects checked their work by having the computer plot the graph. This

raised the question of why a graph would differ from the prediction. ST

subjects, recording computer-plotted graphs, lacked opportunities to make
errors that would raise questions. Given a graph that was rounded, ST subjects

were not likely to question why it was not pointed. However, for GF subjects,

first predicting the shape, then checking it, raised interest in whatever features

turned out to be different from what had been predicted.

Given that GF subjects had learned to predict the shape of a graph
before plotting, it is not surprising that they performed better than ST subjects

on posttest items that did not conveniently reduce by symbol manipulation to

easily recognized graphs and that also did not analyze readily as transformations

of sine or cosine graphs. GF subjects had more experience with an additional

method of approaching graphs, although, in fact, five of the seven graphs that

GF subjects were asked to predict during the treatment would have been easily

(and more efficiently) accessible by symbol manipulation into basic graphs or

squares of basic graphs.

The GF Treatment's emphasis on graphically predicting the shape of a

function may account for the difference in posttest performance on the non-
routine items, but it does not explain the difference for other categories of
items, particularly those requiring only recognition of basic graphs and use of

routine symbol manipulation.
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CONCLUSION

In addition to using graphical representations as the foundation for
trigonometric identitites, the Graphical Foundations Treatment was intended to

involve students in:

1. Experiencing active participation in the development of
mathematical ideas. Students were to predict and figure out,
rather than follow examples, copy graphs, and have ideas
explained.

2. Building a qualitative perspective before formalizing procedures.
Trigonometric identities were introduced graphically, and the
usual symbol manipulations were used to justify algebraically
the relationships observed in the graphing activities.

3. Applying previous knowledge and skills to a current problem
without being told what, in particular, to do. Students were to
decide what of their previous knowledge was applicable and
devise convincing arguments for observed equivalences.
Students were involved in learning more generally-applicable
inquiry techniques in addition to basic content.

The results of this study suggest that a graphical approach, with careful
attention to students' experiences beyond the immediate content goals, can
produce a richer learning experience without significant detrimental effect on

the mastery of standard content. In addition to showing superior posttest
performance in relating functions to their graphical representations, subjects in

the Graphical Foundations Treatment exhibited more variety and personal
involvement in their approaches to the standard content.
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Area and Perimeter, Applied Problem Solving and
Constructivism

John P. Pace
Essex County College- Newark, N. J.

"We need to be careful not to put the
constructivist cart before the values horse"
(Kilpatrick, 1987, p.21).

A theory of knowing can never determine for us an
answer to the question of what it is we should come to
know; i.e., function cannot define value. On the other
hand, it may be that values can influence function.
Explicit values, expressed in a learning context
evident to the learner, can help give rise to the
purposeful inquiry of the learner, and thereby enhance
whatever are the functioning mechanisms by which we
learn. In the research that we report here, explicit
social values helped create just such a context for
learning. Within that context, students purposeful
inquiry while engaged in applied problem solving,
contributed to their learning of area and perimeter
concepts.

Perspective and Background

In this research on the teaching and learning of area and

perimeter concepts, our purposes rested on the value judgment

that for any student, knowledge of foundational geometric ideas

is clearly a preferred state. Arguments for the study of

geometric concepts are various, but in particular, even an

elementary understanding of area and perimeter offers a vast

potential as a basis with which learners may form and generalize

their understanding of many mathematical and scientific ideas.

Some of these ideas include certain obvious cases, such as those

found in measurement concepts in the extension from linear to

multidimensional settings. Perhaps less evident cases relate to

a generalized perimeter or "boundary" concept; one necessary in

the simple dichotomous logic arising in two variable linear

inequalities, in the notion of a line integral, in arc length,

in boundary value problems, in the Jordan curve theorem, in the

open and closed sets of topology, in the contour integrals of

complex analysis and in a vast number of other cases.

However, in our research, as will nearly always be the case,

students were not and could not have been aware of any of our
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deeper educational aims; our lofty notions, the "good" of our

program. As a consequence, in our instructional model, we tried

to directly address the problematic question of developing and

sustaining, throughout the teaching program, what is the

interest, or more essentially, the intellectual curiosity of

students.

Since we believe in a conception of mathematics as a highly

developed superstructure of interwoven concepts which

nevertheless rests on a base of historical necessity and

practical consideration, our concern was that students might

experience some small measure of that concept for themselves. As

a result of that experience, we believed that students might

then be more likely to believe, in the sense of Thom (1973), in

the existence of that which we call mathematics.

In an attempt to overtly demonstrate that mathematics is

related to actions on the world, our model chose a social

context in which to develop the teaching program; one that, by

our judgment, would be relevant to the 67 adult subjects of the

study. That social context was the urban redevelopment of

Newark, N. J.; the city in which most of the students lived. Our

sense of adults in a remedial mathematics course was that they

needed to be moved away from a conception of mathematics as

limited to topic review (however thorough) and toward what might

be a mathematics of relevant problem solving. Part of our job as

educators was to try to provide a setting for the directed

program experiences of students so that they might continually

redefine their notion of "relevance" and ultimately decide that

with respect to certain specific questions, it was indeed

exactly mathematical concepts that were most relevant. Within

the context of a city's renaissance, our model established a

potentially rich setting for applied problems. Our instruction

was flexibly but firmly directed toward the encouragement of

student questions and discussions that were almost inexorably

predisposed toward aspects and issues of form and quantity;

i.e., mathematical concepts.

Applied problems provided the vehicles in our model by which
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student understanding was transformed. But, first we had to

create a context in which subsequent classroom activity, from

the learner's perspective, would seem purposeful. All of the

utilized problems are described in detailed classroom protocols

in the completed research (Pace, 1989a). Previously described in

some detail (Pace, 1989b; Pace & Maher, 1989) is "the shopping

mall problem". Briefly, this initial problem posed to small

groups of students how they might choose a "best" parcel of land

for a joint business venture in a hypothetical, newly

constructed Newark shopping mall. A process of open-ended

discussions lead to a variety of questions ranging somewhat

unpredictably over concepts found in real estate, marketing, tax

law, mortgage loans, etc..., and including those of area and

perimeter, for which our program was designed. With the guidance

of their instructor, students were able to extract mathematical

concepts from a lifelike situation rather than what might be a

more typical converse situation; i. e., where students are

taught a mathematical concept and then must try to somehow

imagine where, how or why any such idea might arise.

Results with a second set of problems have also been

previously reported (Beattys & Pace, 1988). This second set of

applied problems developed measurement tasks through activities

concerned with the covering and framing of posters. Another

activity, gave the students a representational drawing of a

square foot and asked for a drawing representative of a square

yard.

Selected Quantitative Results

The research design, as previously detailed (Pace, 1989a,

1989b), enabled all subjects to act as part of both control and

experimental groups. At 2 1/2 week intervals, subjects were

pretested, posttested, and tested for retention (delayed test)

with three forms of the "Applied Geometry Test" (AGT) (available

from the author upon request). This 19 item test combined a few

elementary items from the "Van Miele Geometry Test" (Usiskin,

1982) and included a somewhat larger number of applied area and
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perimeter problems. Scoring was done by two experienced

mathematics teachers utilizing strict grading criteria for

partial credit.

Out of a possible score of 100, the subjects' mean AGT pretest

score was 36.5. Referring to the density function of Figure 1,

we note that 86.6% (58/67) scored less than 50%.

100
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ra4 50
40
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10

10 20 30 40 50 60 70 80 90
AGT Pretest Scores

Figure 1. Cumulative density function for Applied Geometry

Test pretest for all subjects.

Through the use of a sequence of stepwise linear and

multivariate regression models, all of whose parameters were

estimated by the computer program, Regress II (Madigan &

Lawrence, 1983), we found a significant increase in performance

and retention on the AGT.

Posttest Prediction
Regression model 1, which predicted AGT posttest score as a

function of membership in the experimental or control groups and

AGT pretest score, yielded the following equation:

yp = 4.216 + 29.169x0 + 0.895x1 (1)

Equation 1 indicates that posttest prediction score is a

function of two variables; xo, membership in the experimental or

control group and xi, AGT pretest score.

Since xo = 1 for experimental group and 0 otherwise,

yp = 33.386 + 0.895x1, for the experimental group, and

yp = 4.216 + 0.895x1, for the control group.
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These equations are plotted in Figure 2. The results of

stepwise linear regression model 1 indicate conclusively that

membership in the experimental group is a significant factor in

AGT posttest performance. The approximate average difference of

29 points between students of similar AGT pretest achievement in

the experimental and control groups, we attribute to the

experimental program of teaching.

Equally as significant as the above result was the fact that a

multivariate regression model, incorporating "van Hiele levels"

and scores from the New Jersey College Basic Skills Placement

Test (NJCBSPT) as additional predictor variables, could offer no

better prediction equation than that of equation 1.
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group
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10 20 30 40 50
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Figure 2. Predicted Applied Geometry Test posttest scores as a

function of Applied Geometry Test pretest scores.

control
group

60 70 80

Retention

A general multivariate model for predicting "delayed" AGT

posttest achievement considered AGT pretest, AGT posttest, van

Hiele level and NJCBSPT score as predictor variables. The

regression model yielded the following prediction equation:

Yd = -2.6698 + 0.4282x1 + 0.7176x5 (2)
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Equation (2) indicates that yd, predicted scores on the AGT

delayed posttest are a linear function of scores on AGT pretest,

xi and posttest, x5; i.e., yd = f(x1,x5). This function is

represented by the plane graphed in Figure 3.

To offer a simple interpretation of the graph of Figure 3,

consider two students, one with (xl,x5) AGT pretest/posttest

scores, and the second with (xi+ai,x5+a5) AGT pretest/posttest

scores. The difference, then, in expected delayed posttest

achievement is:

Yd(xl+al,x5+a5) Yd(xi,x5) = 0.4a1 + 0.7a5

= -2. 7 + O. 4x
1
+ 0' 7x

5

(0,3.9,0)

6

AGT
Pretest

Xi

-3 '1/4

(0,0,-2.7)
AGT

Posttest
(6.8,0,0)

x5

Figure 1. Applied Geometry Test delayed achievement as a

linear function of the two variables; Applied Geometry Test

pretest and Applied Geometry Test posttest (Isometric View-

Planer Region).

Summing Up

When taught area and perimeter concepts through an

unconventional program of applied problem solving developed

within a social context designed to interest adults, students

demonstrated dramatic and retained achievement. Could they have

learned these concepts without such an approach? At some
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reasonable level, we are certain that they could have. But our

argument is as much for the process of education as it is for

any measurable result. Long after "facts" are forgotten, the

process; a construction, lingers on. It is just this kind of

construction, or perhaps more appropriately, this kind of

reconstruction, in a purposeful direction, that might provide

the "stuff" of which mathematics education could be made in a

different way.

Whether our epistemological "cart" be of constructivist design

or otherwise, it is ultimately the values of the "driver" (and

not the fancy of the horse) that will determine both our

direction and destination.
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PROBLEM POSING BY MIDDLE SCHOOL MATHEMATICS TEACHERS

Edward A. Silver and Joanna Mamona

LRDC, University of Pittsburgh

The problem posing and conjecturing of middle school
mathematics teachers was examined by asking them to produce
conjectures in a task environment that allowed exploration of a
rich variety of mathematical relationships. Subjects generated
conjectures both before and after attempting to solve a specific
problem embedded in the same task environment. The findings
suggest that the teachers could generate reasonable, interpretable
conjectures and problems related to many aspects of the task
environment and that there were qualitative differences between
the conjectures generated before solving the specific problem and
those generated afterwards.

Progress has been made in the past two decades in understanding many aspects of

mathematical problem solving (Fredericksen, 1984; Silver, 1985). Research on problem solving,

however, has focused almost entirely on problems which have been formulated in advance for the

solver. Although problem posing and conjecture were at the heart of George Polya's writings on

problem solving (1954, 1957, 1981), and although Polya's work has spawned much of the interest

in mathematical problem solving as a field for research in mathematics education, very little

research attention has been focused on the important processes involved when solvers generate their

own problems (Kilpatrick, 1987).

Given the centrality of problem-posing processes not only in the discipline of mathematics

and the nature of mathematical thinking but also in current efforts to reform the character of

precollege mathematics education, research that deals directly with problem posing is needed. The

study reported here examined the problem-posing behaviors of middle school mathematics teachers.

Teachers were viewed as important subjects in the study of problem posing because they represent

a quasi-expert population whose knowledge of mathematics is likely to exceed that of the students

they teach, and because it is important to know if precollege mathematics teachers themselves can

and do engage in these generative processes in their own problem solving. Since recent calls for

reform of precollege mathematics (e.g., NCTM, 1989) argue that problem posing should be a

regular feature of middle school instruction, the implication is that problem posing is accessible

not only to all students at these grade levels but also to their teachers. The purpose of this study

was to investigate the ability of middle school mathematics teachers to generate and pose

interesting mathematical conjectures or problems. Subsidiary purposes were to investigate the

adequacy of the task and methodology utilized in the study and the influence, if any, of

collaborative pairing on the generative products.
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METHOD

Subjects Data were obtained from 53 teachers of middle school mathematics who attended a

Summer workshop sponsored by their school district. The mathematics background of the

subjects varied from a Bachelor's degree in mathematics to no formal collegiate-level mathematics

coursework. The 53 teachers produced 39 samples of work, since 25 worked individually and 28

worked in pairs.

Task A Billiard Ball Mathematics (BBM) task, in which an imaginary billiard ball is projected

from the lower left corner of a rectangular table at an angle of 45 degrees to the sides, was used as a

task environment in which subjects could generate (and solve) interesting mathematical problems.

Several questions can be asked about the behavior of the ball in the BBM task; each question

can be the basis for posing a mathematical problem or generating a conjecture. For example, one

can ask, "Will the ball always land in a pocket?"; "Can we predict the final pocket into which it

will fall?"; or "Is there a relationship between the dimensions of the table and the final pocket or

the number of "hits" made by the ball on the sides?". The BBM task can be viewed as an

experimental task domain in which the independent variables are the table's length and width and

the gradient of the ball's path. Several interesting dependent variables are the final pocket (into

which the ball would fall), the number of "hits" made on the sides by the ball on its path, the

number of squares passed through by the ball on its path, and the number of regions formed by the

trace of the path of the ball. Determination of relationships between and among dependent and

independent variables requires knowledge of elementary number theory, involving only concepts

and skills studied routinely in middle school (e.g., factors, multiples, least common multiple).

Task Presentation In this study, three paper and pencil tasks, embedded in the general BBM

task environment, were administered to the subjects. The three tasks were administered during a

fixed time period. The Initial Conjecturing (IC) task lasted 10 minutes, and it was followed by the

Problem Solving (PS) task, which lasted 35 minutes, and the Additional Conjecturing (AC) task

which was available during the PS task and during an additional 5 minutes.

The IC task consisted of a brief description of the basic BBM task environment, accompanied

by two examples of particular billiard tables and the path of the ball on each table. For each

example, the dimensions of the table, the path of the ball, the final pocket and the number of hits

on the sides were pointed out, and the subjects were directed to write down any problems or

questions they could think of related to this setting. In order to stimulate the broadest possible
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array of conjectures or problems, directions for the IC task were deliberately nondirective about the

sort of questions or problems that should be written by the subjects.

For the PS phase, a particular problem was posed for the subjects. They were instructed to:

"Look at the examples, think about the situation for tables of other sizes, consider as many

examples as you need, and try to predict the final destination of the ball. That is, when will the

ball land in pocket A? When will it land in pocket B?..in pocket C?..in pocket D?" During the

PS phase, grid paper was freely distributed to the subjects, since it was expected that their

solutions would be based on an empirical approach.

The directions for the AC task repeated those given for the IC task. The placement of the IC

and AC tasks before and during/after the PS task was designed to explore how the empirical work

on the specific problem might affect the quantity or quality of conjectures generated by the

subjects.

RESULTS

In this paper, the responses to the IC and AC tasks are called conjectures, and the responses to

the PS task are called solutions. Subjects' conjectures and solutions were classified within a broad,

general categorization scheme which was created to be suitable for analyzing a wide range of

conjecturing and problem-solving tasks. In our discussion of results, we will first present our

analysis of the conjectures produced during the IC and AC phases, then we will present data

concerning the solutions produced during the PS phase. Finally, we will present our preliminary

analysis of the relationship between subjects' conjecturing and problem solving.

Conjectures Generated in the IC and AC Tasks

The conjectures were divided into four categories which partitioned the set of interpretable

responses into mutually exclusive subsets. In order to make the partition exhaustive for the entire

set of responses, a fifth category , consisting of uninterpretable responses, was added. A brief

description of each category is given in Figure 1. After the categories were developed, each

conjecture was coded independently by two raters. Use of these categories resulted in an acceptably

high degree of inter-rater reliability (Kappa = 0.91). After computing the reliability, the few

discrepancies between the two raters' categorizations were resolved through discussion before the

final tallies were recorded for each category.

Table 1 presents a summary of conjectures produced by individuals and pairs on the IC and AC

tasks. The data indicate that subjects were more productive in posing conjectures during the IC

phase, and that the rate of production during both phases was similar for individuals and for pairs.

Subjects were not "pure" in their conjecturing and tended to produce conjectures in more than one
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Figure 1. Categories of Conjectures Produced during the IC and AC Tasks

Category 1 (Implicit Assumptions) Conjectures related to varying the assumptions which

are implicit in the BBM task situation, such as introducing spin or collision with other balls;

varying speed, force or momentum; or allowing a difference between the angle of reflection and

the angle of incidence after a hit.

Category 2 (Initial Conditions) Conjectures related to varying the initial conditions of the

task, such as changing the angle at which the ball is projected or the initial position from which

it is propelled.

Category 3 (General Goals) Conjectures related to general goals, such as questions seeking

a relation between the dimensions of the table and either the number of hits on the sides of the

table or the number of squares and triangles traced by the ball.

Category 4 (Specific Goals 1 Conjectures related to specific goals, such as questions about

the final pocket or total number of hits for a table with specified dimensions or the dimensions

needed for a specified final pocket to be reached.

Category 5 (Other) Conjectures which are vague or difficult to understand or which do not

appear to be formulated in the form of a question about the task environment given.

Table 1 Distribution of Conjectures by Task and by Category

Category

Phase 1 2 3 4 5 Total

Individual IC 16 7 18 15 18 74

(N=25) AC 6 7 10 23 20 66

Pairs IC 10 6 7 7 20 50

(N=14) AC 10 3 1 10 10 34

Total 42 23 36 55 68 224
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category. Subjects produced more conjectures in Category 4 (related to specific goals) in the AC

task than in the IC task. On the other hand, subjects were more likely to produce conjectures in

category 3 (related to general goals) in the IC task. These results probably show the influence of

the intervening PS task. Overall, conjectures in Category 4 were the most common, accounting

for 35% of the interpretable conjectures produced; whereas, conjectures in Category 2 were the least

common, accounting for only 15% of the interpretable conjectures.

Solutions Produced in the PS Task.

The responses were divided into four categories which partitioned the set of interpretable

solutions or attempted solutions into mutually exclusive subsets. The categories were based

primarily on the completeness of the attempted solution and the generality of the approach taken.

In order to make the partition exhaustive for the entire set of attempted solutions, a fifth category ,

consisting of solutions that were misdirected or difficult to understand, was added. A brief

description of each category is given in Figure 2.

Figure 2 Categories of Attempted Solutions in the PS Task

Category I (Simple List) Attempted solutions involving the construction of a simple list

consisting of worked examples for particular dimensions.

Category II (Ouasi - General) Attempted solutions which are broader than simple lists, in

that some consideration of ratio is evident, or one dimension is fixed while the second dimension

is varied.

Category III (General. but Case Bound) Attempted solutions which are intended to be

general but which are confined to consideration of only one particular final pocket.

Category IV (General) Attempted or complete solutions which are based on consideration

of all possible dimensions.

Category 0 (Other) Attempted solutions which are misdirected or ambiguous.

Table 2 contains a summary of the solutions produced by individuals and pairs. The small

number of solutions (only 6 of 39) in the higher categories (III or IV) indicates that most subjects

did not produce complete solutions. Particularly striking was the poor performance of the subjects

working in pairs on the PS task. It would appear that the solution performance for both

individuals and pairs would have been stronger if there had been more time available. Several

partial solutions contained promising local results which could have been extended to provide a
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more general solution if more time were available to the subjects. Subjects operating in pairs

might have been especially hampered by the time constraint.

Table 2: Number of Solutions for Individuals and Pairs by Category

Responders 0 I

Category

II III IV Total

Individuals 5 9 6 3 2 25

Pairs 6 4 3 0 1 14

Total 11 13 9 3 3 39

Relating Solutions and Conjectures

Possible relationships between the conjecturing and problem-solving behaviors of the subjects

were also examined. A few trends were evident, but there appeared to be no direct, simple

relationship between the two data sets. For example, during the AC task, subjects who produced

"weaker" solutions in the PS task were about three times as likely to make conjectures related to

implicit assumptions than subjects producing "stronger" solutions; but there was no similar

relationship for the IC task. Subjects who produced the strongest solutions on the PS task also

tended to make a larger percentage of their conjectures on the AC task in category 4, but there was

no similar trend for the IC task. In fact, on the AC task there was a general trend for all subjects,

regardless of their success on the PS task, to make more conjectures in category 4 and fewer in

category 1. The tendency of subjects to produce conjectures related to specific goals on the AC

task is likely due to the influence of the PS task.

DISCUSSION

The BBM task appeared to function well as a micro-environment for mathematical

conjecturing. In particular, the responses to the IC task were rich in variety. The middle school

teachers in our sample were able to generate a reasonable number of interpretable conjectures under

the conditions of the tasks presented to them. Moreover, the solutions produced in the problem-

solving task gave an indication that the teachers were capable of making reasonable progress

toward an empirically-based solution to the problem that was posed. Therefore, our evaluation of

the task and methodology is cautiously optimistic.

The results also suggested that it is reasonable to examine problem posing and conjecturing

both before and during/after problem solving. In fact, the different kinds of conjectures produced

by subjects on the IC and AC tasks point to a potentially interesting interaction between their
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problem-posing and problem-solving behaviors. The specific question given in the PS task

probably diverted subjects' attention away from general conjectures and directed it toward specific

conjectures similar to those embedded in the PS task. Since post-solution conjecturing is an

important component of mathematical thinking (Brown & Walter, 1983), this phenomenon

deserves further research attention and analysis.

The tasks and methodology employed in this study appeared to be suitable for gathering, in a

relatively short time, a large amount of data on this topic. Several limitations, however, constrain

our ability to interpret our findings and make generalizations. For example, the lack of clinical

interviews a natural alternative to our large-group, written tasks somewhat hampered our

analysis and interpretation of responses. It is difficult to know whether the fairly large number of

uninterpretable responses was due to a basic misunderstanding of the task requirements, a difficulty

in communicating conjectures and problems, or subjects' mathematical weaknesses. Nevertheless,

the group-administered, paper-and-pencil BBM tasks appear to be viable as components of an

assessment scheme designed to study or evaluate mathematical problem posing.
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Factor Structure of Junior High School
Students' Responses to Metacognitive
Statements for a Non-routine Problem

Deborah Hecht
Carol Kehr Tittle

Graduate Center, City University of New York

Abstract

A series of 21 statements were designed to elicit student awareness
of cognitive activities when working on a non-routine mathematical
word problem. Four hundred and twenty-one junior high school
students responded to these metacognitive statements as part of a
larger study of student's thoughts and feelings about mathematical
word problems. Based upon a principal axis factor analysis, clusters
of items were identified. These were student awareness of
processing activities before, during and after solving the non-routine
problem, as well as general problem solving activities. The results
suggest a paper and pencil measure may help teachers and
researchers to assess student awareness of cognitive activity during
problem solving.

Objective

The objective of this study was to examine the factor structure of a set of

statements that were intended to elicit students' awareness of their active monitoring

and regulation of their cognitive processes during the solution of a specific
non-routine mathematical word problem. Items encompassed activities described

in most models of metacognition in mathematical problem solving: awareness of

processes before, during and after problem solving. A fourth category included a

list of general problem solving strategies, e.g. I drew a picture.

Theoretical Framework

The theoretical framework for the metacognitive statements was developed

from research that has examined mathematical problem solving (e.g., Garofalo &

Lester, 1985 ; Schoenfeld, 1985) and from research and models in psychology on

metacognition and problem solving (e.g., Flavell, 1979; Como & Mandinach, 1983).
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These studies have led to a general set of categories within higher-order processes

that describe when and how an individual accesses and applies relevant information

for efficient and accurate problem solving (Artz & Armour-Thomas, in preparation).

Methodology and Data Sources

In the development of the metacognitive statements several of these sources

were used to generate statements that junior high school students could respond to

following the working of a non-routine mathematics problem. These statements

were reviewed by mathematics teachers for their meaning in instructional planning.

They were also tried out with students individually, to check the meaning of the

wording for students. The result was a set of 21 statements grouped into four
categories: general problem solving strategies; and specific strategies used before,

during, and after solving the word problem. The statements were included on one

of three forms developed for a larger project, the Mathematics Assessment Project

(funded by the Ford Foundation). The three forms were randomly distributed

within classes at eleven junior and senior high schools in New York City during

April, May and June, 1988.

The sample for the factor analysis described here included 421 students from

grades 7, 8, and 9. The sample was approximately 1/3 Black, 1/3 Hispanic, and 1/3

White, with approximately 60% females and 40% males. Forms were administered

during one classroom period by classroom teachers with project staff as monitors.

The data were analyzed using the SPSSX principal axis factoring with

varimax rotation. Eigen values greater than 1 and a scree test were used as a
criterion to determine the number of factors to retain.

Results and Conclusions

Table 1 presents the main results for the four factor solution across the

complete set of 21 items. As shown in Table 1, the four factor solution provided the

best interpretation. The four factors followed the general structure used in writing

the items, identifying clusters of items that indicate student awareness of processing

activities before, during and after solving a non-routine mathematics problem as well

as general problem solving strategies.
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The results of the factor analysis indicate that students' responses to being

asked to reflect on their cognitive processes during problem solving have a structure

that follows at least partly the general activities proposed by researchers in
mathematical and psychological problem solving. In addition to the item responses

obtained in this study, small-scale studies within single classrooms provided an

opportunity for students to write in reactions. Of considerable interest for linking

research and mathematics education are student comments such as, "It made me

think about what I actually do every time I do a math example." In other pilot work

it was found that the mathematics problem used with the statements is critical to

eliciting awareness of cognitive processes--use of routine problems will not elicit

awareness of cognition and results in different response patterns. Students appear

to "go onto automatic pilot" with very familiar, routine problems.

Importance for Psychology of Mathematics Education

The importance of the results are in providing a prototype paper and pencil

instrument that begins to tap student awareness of their cognitive activities during

problem solving. While responses cluster into categories similar to those suggested

by research, there is no intention that these be developed as a scale or scored.
Future research will examine the relationship of the responses to the metacognitive

statements to level of mathematics achievement. The development of an assessment

instrument provides opportunities for examining the relationships of these
statements and other psychological variables, and for studies of teacher use of such

information in planning for and carrying out instructional activities in mathematics.

The classroom use of statements such as these offers teachers an opportunity to

begin to explore student cognitive activities. The statements could be used as

instructional materials by directly discussing them with students, with no "scores" or

"scales" implying value judgements.
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Table 1

Factor Loading for 21 Metacognitive Items
Administered to 421 Students in Grades 7, 8 and 9

Items

I felt confused and could
not decide what to do.

I did something wrong and
had to re-do my step(s).
I "guessed and checked."

I tried to remember if I
had worked a problem like
this before.

I thought about a different

I looked back to see if I
did the correct procedures.

I checked to see if my
calculations were correct.

I looked back at the problem
to see if my answer made
sense.

I went back and checked my
work again.

I kept looking back at the
problem after I did a step.

I drew a picture to help me
understand the problem.

I thought about all the
steps as I worked the
problem.

I checked my work step-by
step as I worked the
problem.

I had to stop and rethink a
step I had already done.

2

Loadings

IV

.719 -.187 .034 -.049

538 .026 .068 .132

S21 .066 -.068 -.022

.339 .203 -.039 .287

312 .067 -.054 .198

.006 .686 .227 -.028

-.094 S36 .116 .267

.127 .496 .077 .163

.075 .409 .181 .235

-.004 .055 S78 -.055

-.318 -.009 .468 -.085

-.106 .189 .427 .143

-.116 .329 A07 .184

.266 .050 .371 .163
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Items

I read the problem more
than once.

I thought to myself, Do I
understand what the question
,s asking me?

I tried to put the problem
into my own words.

I wrote down important
information.

asked myself, Is there
information in the problem
{hat I don't need?

I thought about what
information I needed to
Solve this problem.

J picked out the operations
J needed to do this problem.

I II III IV

.061 .111 .290 .078

.033 .081 .206 .194

.144 .040 .102 .443

-.076 .183 .164 .409

.232 .085 -.109 .373

-.019 .149 .192 .332

.179 .271 -.009 .325

Sold type indicates highest loadings.

BEST COPY AVAILARr
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BELIEFS ABOUT THE CAUSES OF SUCCESS AND
FAILURE IN MATHEMATICAL PROBLEM SOLVING:

TWO TEACHERS' PERSPECTIVES

Deborah NAjee-ullah
Lynn Hart

Karen Schultz
Georgia State University

This study reports evidence of beliefs held by two high school basic
skills mathematics teachers observed while solving mathematical
problems. In particular, beliefs about attributions of success and
failure are related to a variety of achievement and performance
outcomes. The objective of this study was to document evidence of
attributions of success and failure and their relationship to the
problem-solving behavior exhibited by these two teachers.
Observations revealed that 1) attributions were made as
explanations of their performance and 2) attributions of success
were classified differently with respect to the locus of control
dimension of causality while attributions of failure were classified
similarly for the stability and controllability dimensions of causality.

Teaching is a modeling process in which an assortment of beliefs are
continually being communicated from teachers to students and are exchanged
between teachers and students via a variety of behaviors. These beliefs are often

communicated or interpreted as expectations and tend to shape corresponding

beliefs and behaviors in students over time (Brophy & Good, 1974). Some of these

beliefs are productive (constructive) and promote teacher and student behaviors

which facilitate learning. Others are nonproductive (nonconstructive) and promote

teacher and student behaviors which hinder learning. Thus, identifying the beliefs

teachers possess which enhance or adversely affect learning is an important issue.

This paper will present findings regarding one aspect of a larger study of

several achievement-related teacher beliefs (Najee-ullah, 1989). The beliefs of two

high school basic skills mathematics teachers regarding the causes of their success

and failure at solving mathematical problems will be reported. Such beliefs, called

attributions of success and failure, have been shown to be associated with
achievement-related behaviors and performance outcome (Weiner,1972, 1975, 1979;

Weiner, Heckhausen, Meyer, & Cook, 1972). This research attempts to link
theoretical work in psychology (attribution theory) with theoretical work in
mathematics education (beliefs theory) to better understand mathematical thinking
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and performance. The specific research question posed was:

What evidence of attributions of success and failure are observed in high

school basic skills mathematics teachers while solving mathematical

problems?
THEORETICAL BACKGROUND

Causal attributions are those factors which individuals believe to be

responsible for success or failure experiences. They have been shown to guide and

influence subsequent achievement-related behavior (Dweck & Goetz, 1978; Dweck

& Wortman, 1982; Graham, 1986; Weiner, 1972, 1975, 1979). Individuals 'make

attributions about their own successful or failing experiences and they also make

attributions about the success and failure experiences of others (Graham, 1986;

Weiner, 1972, 1975, 1979). The beliefs that teachers have about the causes of their

performance or achievement outcomes are reflected in their behavior in

achievement-related situations. The attribution . theory of success and failure

assumes that individuals actively seek reasons to explain their success and failure in

achievement situations, particularly their failure (Dweck & Goetz, 1978; Dweck &

Wortman, 1982; Graham, 1986; Weiner, 1975). Attributions are classified according

to dimensions of causality (locus of control, stability, and controllability) which have

been shown to mediate a variety of achievement-related behaviors such as goal

expectancies, speed of performance, initiation ofachievement tasks, value for similar

tasks, persistence when faced with failure, and sympathy or anger from others.

DATA SOURCE AND METHODOLOGY

The present study used data from the Problem Solving and Thinking Project

(Schultz and Hart, 1989). Data were gathered from videotaped individual and small

group pre and post problem-solving sessions for two subjects, Gail and Marsha, both

high school basic skills mathematics teachers who participated in the Winter 1987

Problem Solving and Thinking Institute which promoted metacognitive awareness

and activity.
The problem-solving videotapes were studied in conjunction with verbatim

transcripts of these sessions. The analysis of the transcripts followed the constant

comparative method of analyzing data (Lincoln & Guba, 1985). This method

involves the examination of data for categories of emerging patterns and themes.

e Ethnograph, a computer data-management program, was used to code and

catalogue the beliefs which emerged. Coded transcripts of pre and post individual

and small group sessions resulted. Every excerpt identifying a belief related to the
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research questions was reported and examined according to type and chronologically

to preserve any pre and post differences that may have occurred.

RESULTS

Attributions of success and failure will be reported for each subject
separately. Session summaries will be provided followed by one example of typical

excerpts from transcripts, due to space constraints. The problems worked for each

session are as follows:

Pre interview: (a) Give me two fractions whose difference is 2/13. (b)
Give me two fractions with unequal denominators in lowest terms whose
difference is 2/13.

Pre small group: A Proper Fraction: I am a proper fraction. The product
of the numerator and denominator is a multiple of seven. Their sum is a
perfect square. Who am I?
Post interview: There are 15 students in this class. (a) How many seating
arrangements can be made with 15 desks? (b) Make sense of your answer.

Post small group: In a certain card game, one of the hands dealt contains
exactly 13 cards, at least one card in each suit, a different number of cards
in each suit, a total of five hearts and diamonds, a total of six hearts and
spades, and exactly two cards in the trump suit. Which one of the four suits
is the trump suit?

Attributions for Gail
Gail made attributions for her successes and failures, but made them more

often for her failures. Except for one instance, attributions were expressed in the

interview sessions.

For the pre interview Gail was able to solve part (a) and made no
attributions for her success. She was, however, unable to find appropriate
combinations to satisfy the problem conditions in part (b), using trial and error as

her primary strategy. She became frustrated and ended her problem-solving

attempt. She attributed her failure to solve the problem to its being unsolvable,

lack of effort, and inexperience with unsolvable problems.

Lack of effort: For how much energy I am willing to put in on problems
usually, I'd say it's, well it's still not hard because I still think that I have
enough to play with, I would still want to play with it... I don't feel like, I
think I've probably intelligently explored all my options. I haven't really gone
crazy on it yet. There is a depth to which I will sink on these things.

For the post interview Gail thought she solved part (a) correctly, although

she solved the problem using a "factorial by addition" process which she derived.

She attributed her "success" to her ability to generalize and derive correct formulas

by identifying patterns. Gail was unable to satisfy part (b) by explaining the factorial

process. She readily admitted that her depth of understanding was superficial and
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that she would be unable to convey a deeper understanding to her students. She did

however express success in her ability to teach students heuristic strategies such as

pattern identification.

Problem-solving ability: So being able to simplify... a problem. That's a skill.
I mean... you have to acquire the ability to know that your problem will fit
in the pattern of that... Knowing the factorial eliminated a lot of... long work
which I would have done.

The one attribution for success made during the post small group session was
ascribed to group effort or the ability of the group to work together.

Attributions for Marsha

Marsha's attributions of success or failure were made primarily during the

pre interview session. Marsha made attributions for her successes and failures, but

like Gail, made them more often for her failure.

In the pre interview, Marsha was able to solve part (a) and attributed her

success to the easy task of working with like denominators and her appropriate

strategy choice. She relied exclusively on trial and error as a strategy for part (b)

and was unable to solve it, attributing this to the difficulty of working with unlike

denominators, on the unfamiliarity with the interview environment and the
interviewer, and her poor choice of strategy. Marsha also attributed her general

lack of mathematical skill to her minimal mathematics background.

Environment/Interviewer: If I had had longer and the camera... I don't
know you... I probably could have solved it.

In the pre small group session, Marsha and her partner pursued two separate

solution strategies. The frustration caused by lack of progress prompted Marsha

to attribute her failure to a distraction from the camera. Marsha seemed to almost

stumble upon the answer and attributed her success to chance/luck.

Chance/luck: And then it just dawned on me that 2 and 7 is 9 and 9 is a
perfect square.

During the post interview the one attribution for failure that was made by Marsha

was due to an incomplete understanding of the problem.

CONCLUSIONS

In most cases when evaluating their performance, both Gail and Marsha

included an explanation of their performance in the form of attributions. These
were provided for evaluations of poor performance, but not necessarily for successful

performance. The most common attribution was ability.

Gail primarily attributed her success and failure to internal and stable
factors. Factors causing her success tended to also be uncontrollable. Internal
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attributions would suggest that Gail takes responsibility for her problem-solving

performance and, in instances of success (especially when attributed to effort), would

tend to initiate subsequent achievement tasks. The stability of her attributions for

success and failure would cause her to expect similar outcomes in similar problem-

solving situations, and in the case of failure, would discourage problem involvement

and persistence.

Marsha's attributions of success were primarily external, while no pattern was

shown for attributions of failure, suggesting that she tends not take responsibility for

her successful problem-solving performance. Factors causing her success were

primarily unstable. In contrast, factors causing her failure were typically stable.

This would imply that she would have no strong expectations for success and have

strong expectations for failure when confronted with similar problem-solving
situations in the future. She would also tend to be discouraged when solving

problems and lack persistence when confronted with failure. Attributions for success

and failure were uncontrollable, which, in the case of failure could have been

attempt to decrease adverse evaluations from others.
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PROSPECTIVE ELEMENTARY TEACHERS'
BELIEFS ABOUT MATHEMATICS

Elizabeth Henderson Jakubowski
and

Michaele Chappell
Florida State University

This study deals with prospective elementary teachers' beliefs about
mathematics and about mathematics learning. Attitudinal surveys
were used to identify a diverse sample of 22 students from 186
students enrolled in an "How Children Learn Mathematics" course.
The informants were interviewed and asked to respond to a.
questionnaire which helped to identify beliefs about mathematics
and teaching mathematics. Changes in beliefs were evidenced over
the semester.

As the collection of educational research regarding teachers' knowledge

grows, it becomes increasingly evident that teachers' beliefs about teaching and

learning influence their practice (Thompson, 1984). Jones, Henderson, and Cooney

(1986) found apparent conflicts between what teachers say they believe and what

they perceive needs to occur in their classrooms. The presence of conflicts was
compounded by the lack of commitment by the teachers to a coherent philosophy

of mathematics teaching (Jones, Henderson & Cooney, 1986).

While novice and expert teachers may differ in their degree of effectiveness

and in the depth and breadth of content knowledge and pedagogical knowledge,

many prospective teachers lack the vision of what facilitating the learning of

mathematical ideas entails. Germane to this vision (or lack of it) is a set of beliefs

of what teaching and learning are or should be. With the wide-spread interest in

teacher beliefs in general (Underhill, 1988), there is a growing body of research in

terms of practicing teachers' beliefs. However, there appears to be a scarcity with

regard to research reporting prospective teachers' beliefs, particularly those beliefs

about learning and teaching mathematics held by prospective elementary teachers.

The purpose of this study is to try to determine beliefs that prospective elementary

teachers have about mathematics and about the learning of mathematics.
Knowledge of these beliefs will guide teacher educators in developing for prospective

elementary teachers appropriate experiences which, if necessary, will help to

facilitate change in beliefs held about mathematics. While it is recognized that

teacher's beliefs are influential on the manner in which a person conceptualizes his

or her roles (Tobin, 1987), it is important to consider beliefs about the nature of the

subject to be taught, that is, mathematics (Nespor, 1987).
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PROCEDURE

All degree-seeking undergraduates at Florida State University have to

complete, as part of university-wide requirements, six hours of mathematics,
generally completed during their basic studies (first two years of college). Following

the completion of basic studies, a student continues with requirements within a

college program. Thus, most elementary education majors have completed the

necessary mathematics courses prior to moving into the program. For the majority

of these students, one of the courses taken is College Algebra. The second course

varies, however, few of the students take a course higher than precalculus. Thus,

their next encounter with a "mathematics" class is a required course taken during the

second semester of their junior year. Informants for this study were enrolled in the

course, "How Children Learn Mathematics." A major goal of the course is to
empower prospective teachers to become learners of mathematics and keen
observers of student learning rather than attempting to "teach" every topic of the

elementary school curriculum.

All 186 students enrolled in the seven sections were asked to respond to a survey

that was composed of 36 statements about mathematics, that is, the nature of

mathematics and their feelings about mathematics. Students responded to the

degree with which they agreed or disagreed with each statement. From the pool of

students who were willing to talk further about their responses, 22 informants were

chosen. Care was taken to select as diverse a group as possible. Interviews were

conducted where informants discussed their perceptions of mathematics, influences

on their attitudes about mathematics, and how they viewed the teaching and learning

of mathematics. Informants were then asked to complete a questionnaire which was

designed to allow for more consideration of the nature of mathematics and learning

and teaching mathematics. Seventeen informants completed the questionnaire.

BELIEFS ABOUT MATHEMATICS AND KNOWING MATHEMATICS

Upon entering this course, the informants appeared to hold a formalist view

about mathematics. When asked, "What does mathematics mean to you?", many

responded that it was figuring out problems and coming up with solutions. One

student noted, "...the way we learned it in school, which was like two plus two is

four...you have a problem, you solve it, you have a right answer." Descriptions of

"what mathematics is" included, but were not limited to, "formulas," "operations,"

"computation," "figuring out equations," "procedures," and "rules."
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The belief that mathematics is procedure oriented and involves rote
memorization, stated by several informants, was associated with feelings of fear and

frustration. This was evident in the comment by an informant, "...what comes to my

head when you mention math [is] fear. Me and numbers don't get along....I guess

[I feel that way] because I never truly understood it and there's a lot of memorizing

and math seems progressive so if I don't get the basics you are lost forever. Fear,

anytime I have to take a math test." The fear attribute tended to affect their beliefs

about what mathematics they would be able to teach successfully. The informants

held a strong desire to teach only primary grades (kindergarten through third grade)

because they believed the mathematics encountered in upper elementary grades

would necessitate the teaching of concepts of which they had limited understanding.

Foremost in their minds was the belief that the teacher had to have all the answers

to the problems that would be given to elementary students and when there were

areas for which the teacher did not have the answers, this topic or problem would

be omitted.

BELIEFS ABOUT LEARNING MATHEMATICS

While most of the informants ascribed to the belief that mathematics was a

set of rules to be memorized and followed, whereby the right answer is then
obtained, it was not evident that this belief was present in their views about how

children learn mathematics. Four hypothetical teachers' views were presented and

informants were to identify their degree of strength of agreement with each position

by allocating 100 points between the positions. There was strong agreement with

positions that advocated that learning should occur with understanding and therefore

involve development of the relationships one needs in order to use and understand

mathematics. Ten of the seventeen agreed with the position that learning
mathematics occurred during exploration--students explore problem situations, make

conjectures, and discover things for themselves, thereby learning the mathematics

and how it is used. Three others also agreed with this position but also believed

that mathematics is learned through reasoning logically and seeing how one
mathematical idea relates to another. Two informants held the belief that
mathematics is only learned through reasoning logically. The last two informants

indicated that learning occurred as described in the reasoning position and also

supported the position that mathematics is learned through continual practice until

the mathematics is "down pat."
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DISCUSSION

The preliminary analysis of the data from these informants during their first

mathematics education course suggests that prospective elementary teachers believe

mathematics is "rule-oriented" and there is only one right answer. Presentations and

discussions during the semester in "How Children Learn Mathematics" forced the

informants and other students to deal with their beliefs about the nature of
mathematics and the learning of mathematics. Prospective elementary teachers

were challenged on what it means to be engaged in mathematical activities.
Foremost was the challenge to their belief that there had to be "one way to do it,

one right answer." The prospective teachers were given opportunities to view

episodes where children were making sense out of the mathematics while, at the

same time, they (prospective teachers) were having to make sense out of
mathematics, vis-a-vis non-routine problem solving tasks. Prospective teachers began

to reconsider their beliefs about mathematics. Emerging was a view of mathematics

as a study of patterns and relationships which children should learn in a manner

which makes sense to them (children).

While noticeable changes were evident in the fifteen weeks, further
investigations into the belief systems held by these prospective teachers are needed.

Informants will be followed during their second mathematics education course and,

with those possible, during their internship. Data will be gathered to help describe

further any changes in beliefs in mathematics, along with how the beliefs about

mathematics and about learning mathematics effect their teaching of mathematics.
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PROSPECTIVE ELEMENTARY TEACHERS' CONCEPTIONS ABOUT THE
TEACHING AND LEARNING OF MATHEMATICS IN THE CONTEXT OF

WORKING WITH RATIOS
Marta Civil, University of Illinois at Urbana-Champaign

ABSTRACT
Though the preservice elementary teachers in this study generally
knew how to solve the mathematical problems given to them, they
had little to say about the validity of different methods. To
understand their pupils' methods of solution should be important to
them, but this may not be so, given their views about teaching
mathematics.

This study is part of a research project which set out to address issues such

as: kinds of explanations in mathematics given by preservice elementary

teachers, the mathematical knowledge these explanations rest on, the subjects'

beliefs about mathematics and the teaching and learning of mathematics that can

be inferred from their explanations. Research relevant to the project includes

studies on understanding in mathematics (Davis, 1984; Hiebert (Ed.), 1986),

and on beliefs about mathematics (Cobb, 1985; Schoenfeld, 1985). The present

study was carried out in the framework of an eight week summer course in

mathematics for elementary education majors. Instruction was conducted in

small groups in which the students were encouraged to participate actively in

the construction of mathematics through peer dialogue (Bishop, 1985; Lampert,

1988).
Eight students-subjects were enrolled in the course, six seniors and two

graduate students--all female. Sources of data included: tape recordings of the

students' in-class group work and of task-based interviews; written homework

problems, essays, their diaries, and in-class observations.

This paper focuses on two situations involving proportional reasoning as the

context for presenting some of the subjects' views on mathematics and on

teaching mathematics. At the time of the two situations presented below,

proportional reasoning had not been discussed as part of the course.

DISCUSSION

Dionne (1985) discusses the weight that teachers give to product and to

process in mathematics. Inspired by that issue, I assigned as homework the task

below, adapted from Hirabayashi (1985); in this scenario a fifth grader reaches
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the correct answer via a faulty reasoning.

A group of fifth graders were working on the following problem:
Three children are practicing basket-ball shooting; this is the table

recording the results:
player shots successes
A 4 2
B 10 4
C 20 6

Question: who is the best player?
One of the fifth graders in his solution to the problem made the following

table:
player shots successes

A 20 18
B 20 14
C 20 6

He then concludes that A is the best player.

You are asked to comment on this student's work.

Five subjects disagreed with the child's work, two agreed, and the last

subject could not figure out what the child had done. All the subjects who

disagreed wrote how he should have done the problem. The strategies used were

percentages, unit rates, and comparison of fractions. Their responses do not

convey any shade of hesitation on their part: they all seemed very confident about

the way to approach this problem. But, I cannot help wondering how solid their

confidence was: when further probed, only one out of the five subjects was able

to produce a convincing argument for her work.

As to the two subjects who agreed with the child's work, it is interesting to

note that both of them offered similar justifications for the child's procedure -

namely that the ratio or the relationship did not change:

The way this child resolved this problem was to find a "common
ground" for all the shooters. ... To do this, he added 10 to B's
amount of shots and 10 to his successes. This is appropriate and
good because if he did not, the original 10 to 4 ratio would not be
the same. ... On the whole, I think that this approach to the

problem was creative, divergent, and insightful. [Carol]

Donna wrote:
The fifth grader had a brilliant idea. He decided to use a common
number of shots and adjust the successes accordingly.... he took
the difference of 20 - 2 for player A, and 20 - 6 for player B to
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figure out their success; the relationship is the same so it doesn't
change the problem. [Donna]

Did Carol really think that 10 to 4 is the same ratio as 20 to 14? What did

Donna mean by "the relationship is the same"? It is interesting to note that

both, Carol and Donna, knew how to solve this problem with correct proportional

reasoning. Carol had done so in her written homework, before commenting on

the child's work. Donna did so in an interview before getting the homework back.

Why then did they agree with the child's work? Was it the fact that he had the

right answer? Did they think that this was an alternative procedure?

Answer versus procedure
The fact that the child got the right answer is likely to have led Carol and

Donna to agree with the child's work. In fact, before handing back their

homework I interviewed Joyce (the subject who had not been able to figure out

what the child had done) and Carol together:

Carol: I think it's totally appropriate, like any way he gets to it is fine; I

personally went in terms of ratios and percentages, because that's
the way I think; but it's just an alternative means to the solution,
so I would think that it would be good.

Joyce: Because his answer was right?
Carol: Yeah, but also because
Joyce: I mean, would you point out his error or not?
Carol: Yes [very definite] I would; I would say this is a really excellent

way for you to approach this and I'm really proud of you for
thinking on your own, and I really value that you did that; however
you did stumble a little bit ...

However, it turns out that what she meant by stumbling was not the

procedure itself, but the fact that she had misread one of the child's numbers, and

thus thought that he had made an arithmetic mistake (for player A she had read

20 to 16 instead of 20 to 18).

I also interviewed Donna.on this problem, and gave her the following table:

player shots successes
A 5 1

B 10 4

C 20 10

Using the child's procedure she concluded that A would be the best player,

but remarked that using her method C was the best player. She commented:
Donna: I don't really know. Is he doing something wrong?...Well, I
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thought it was good, obviously, and I said it was; well for this
particular case it worked out; maybe it won't work out for
everything.... I don't know how to explain how come it's wrong.

Donna's observation that the child's procedure "worked" in this case was also

shared by one of the five subjects who pointed out that the child had done

something incorrect: "His simple logic works in this case." [Vicky]

What I have presented above leaves me wondering how ready these

prospective teachers are to understand children's work. How are they going to

handle it when one of their students comes up with a method different from

theirs? What means do they have to determine the validity of a method?

Teaching mathematics to children
Even for the subjects who did not agree with the child's procedure, most of

them made sure to point out something that they thought was positive in the

child's work, for example that he had thought of getting a common denominator,

or that he had got the right answer. Three prevalent threads in these prospective

teachers' thinking about teaching mathematics to children are:

To avoid the child's frustration:

Joyce: If he was really stumbling and got to the point of frustration, I

would point out that it's half, because you don't want to get them
too frustrated because then if just turns them off to math and you
don't want to do that either.

To praise his work:

I would comment that the student was right to change all the shots
to 20 since that was a common number (emphasize good). [Ann]

- To encourage him for thinking on his own:

Carol: I'm really proud of you for thinking on your own.

The subjects' view of their role as teachers is to show the child what to do, to

avoid confusion and to straighten him out, while giving him credit for trying and

doing something on his own. As Ball (1988) points out, "thinking on your

own" may not always be something to praise if in conflict with sound

mathematical thinking.

Handling conflict
The basketball task left me wondering about what kinds of arguments the

subjects could offer against inappropriate additive strategies in ratio situations.
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A couple of weeks later, I audiotaped a session in which six subjects worked in a

group setting on the following problem:

If you need 1 and 1/3 cups of sugar and 4 cups of flour to bake a cake, how
many cups of sugar will you need if you want to use 7 cups of flour?

Four of the subjects solved the problem via a well rehearsed procedure: set

the two ratios to be equal and solve for x. Another subject, Vicky, used a more

informal, everyday mathematics type of reasoning (Lave, Murtaugh & de la

Rocha, 1984). She drew out the cups of flour and sugar, and immediately saw

the relationship between the amount of sugar and that of flour (i.e. 1:3). The

last subject, Carol, solved the problem using an additive strategy [7-4 = 3, so

we need to add 3 cups of sugar, getting 4 1/3 cups of sugar for 7 cups of flour].

The other members in the group tried to explain why that strategy was not

appropriate. Their efforts left me with an feeling of uneasiness at the thought

that these subjects were about to become teachers. The subjects could barely go

beyond saying "but you can't add 3". Every further comment that they offered

was either a paraphrase.of that one, a misunderstanding of what Carol was doing,

or one based on their own correct procedure.

In a last attempt to justify why addition was not appropriate, Lisa told Carol

to change the 1 1/3 to 2, to make it easier and they worked out the problem using

addition. This gave them 2 to 4 and 5 to 7. The discussion ended as follows:

Betsy: Two is half of 4, right? Is 5 half of 7?
Carol: No.
Betsy: Right, so you know it's wrong.
Lisa: Do you understand that?
Carol: Yeah, I understand that. [in a rather submissive tone]

However, I do not think that Carol understood. For her it was once more an

authority telling her that what she had done was wrong. She usually tried very

hard to understand and was not willing to "just accept"; but by that point in this

problem, she was ready to give up. Earlier in that same problem, Lisa had shown

Carol how she had set up her problem as an equality of two fractions while Carol

had set it up as 1 1/3 : 4 and : 7. The following dialogue ensued:

Carol: I had no idea that a fraction was like a ratio.
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Lisa: You did have an idea, thougtf; you just got confused; you had the
right idea; these two dots mean ratio technically.

Carol: But I didn't know that a fraction was the same thing as a ratio.
Lisa: Well, you can set it up this way [with the two dots] if you want.
Carol: But weren't you writing this as a fraction?
Betsy: To solve it.
Lisa: Yeah, to solve it, just to solve it.
Carol: I didn't even know that 3 : 4 is 3/4.

I do not think that either Lisa or Betsy realized the extent of Carol's
confusion. To both of them it was "obvious" that fractions and ratios were

interchangeable. It was not obvious to Carol as she insists on that point in her

four statements in the excerpt above. Carol's use of an additive strategy and her

not knowing that "a fraction was like a ratio" deserve closer attention than her

peers were able to give, as the research on proportional reasoning illustrates

(Karplus, Pulos & Stage, 1983; Koch, 1987).

CONCLUSION

The fact that all the subjects knew how to solve the basketball problem is not

very encouraging once we look closely at their understanding. Accepting a

method of solution because it happens to yield the right answer, or rejecting it

because it differs from their own, are issues which need to be addressed in

teacher education. Most of the subjects could not explain why the method they had

used worked, nor why another method was not appropriate. That their
understanding of ratios was rather superficial was, unfortunately, not

surprising given the subjects' mathematics background characterized by an

emphasis on memorization of rules with little conceptual understanding. What I

found more troublesome is that the subjects did not seem to think that as teachers

they needed to know about these issues.

To them teaching was essentially showing the child how to do it, while

avoiding his confusion or frustration. These subjects were not prepared to look

at the learner's work from his perspective, nor were they aware of the issues

involved in the learner's sources of conflict. To address these, they resorted to

an authoritative "this is wrong, this is how it should be" type of talk; or, they

tried to comfort the learner by "putting the blame" on the mathematics, as

illustrated in the following comment about the cups of sugar/flour problem:
Lisa: Ok, it's just a little bit more confusing when you have fractions

because it's hard to figure it out.
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CHANGING PRESERVICE TEACHERS' BELIEFS
ABOUT MATHEMATICS EDUCATION

Pamela Schram, Sandra K. Wilcox, Glenda Lappan,
Perry Lanier

Michigan State University

This study examines an intervention in an elementary teacher
education program. (1) The intervention - a sequence of
mathematics courses and an integrated methods course - emphasizes
the conceptual foundations of mathematics. The paper investigates
some of the changes in teacher candidates' beliefs about how
mathematics is learned, what it means to know mathematics, and the
role of the teacher in creating effective mathematical experiences for
children.

PRELUDE

Learners of mathematics taught in an environment which emphasizes only
the acquisition of facts and conventional algorithms have but one recourse
when confronted with a mathematical problem: searching their memories
for the fact or the procedure. School mathematics becomes the
accumulation of huge numbers of problems, algorithms for their solution,
mystical formulas and misremembered bits and pieces. Contrast the freedom
and power of a mathematics learner nurtured in an environment in which
the goal is to learn ways of finding out, ways of making sense of mathematics
and strategies for inventing procedures to solve problems or for building
models to understand mathematical situations.

Reflecting on the prelude leads one to the questions, "What teacher
knowledge is needed?" and "What contextual conditions foster the creation of such

places for learning mathematics?" With these questions in mind, we designed an

improvement study - a sequence, of courses on number, geometry, probability and

statistics, and a coordinated methods course - which had as a basic goal
demonstrating the feasibility of creating in new teachers a more conceptual level of

knowledge about mathematics, mathematics learning and mathematics teaching.

The longitudinal study is guided by the overarching question, "What is the nature

and the extent of changes in the beliefs and knowledge about mathematics and

mathematics education among preservice teachers as a result of the intervention?"

An earlier PME paper discussed findings from the first term of the
intervention (Schram & Wilcox, 1988). The report presented here represents an

additional year of data collection and a more developed theoretical framework for

analysis of the data. Students have completed the first two math courses, the
methods course and student teaching and are currently taking the fmal course in the

mathematics sequence.
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DATA SOURCE AND ANALYTICAL FRAMEWORK

We have collected classroom observation and questionnaire data from a

cohort of 24 preservice elementary teachers who entered the Academic Learning

Program at Michigan State University in September, 1987. We have additional data

from an intensive sample of four students that include tape-recorded interviews,

writing assignments, observations of their student teaching and tape-recorded

conferences with mentor teachers and fieldwork instructors. We have developed an

analytic framework for the three questions that inform this paper: 1) What does

it mean to know mathematics? 2) How is mathematics learned? 3) What is the
teacher's role in creating effective mathematical experiences for children? The

framework describes three levels corresponding to different orientations to teaching

and learning mathematics. Our earlier paper provided the expanded framework for

the first two questions. An abbreviated framework for the teacher's role is
presented in Figure 1. The levels provide a way to analyze changes in students'

beliefs about teaching and learning mathematics as they progress through their
teacher education program.

Level 3:

Level 2:

Level 1:

What is the Teacher's Role in the Mathematics Classroom

Establishing mathematical goals that emphasize conceptual
development and relationships; providing problem situations that lead
to learner explorations and inventions; creating opportunities for
children to talk with each other about mathematics.

Establishing mathematical goals that emphasize understanding
procedures; providing activities that are interesting but routine;
asking questions that require an explanation of procedures.

Carrying out goals as determined by text material; providing
demonstrations and examples of tasks to be completed; checking
assignments for completeness and accuracy.

Figure 1: Levels of Orientation

DISCUSSION

Over the two years in which we have been conducting our study, we have

seen significant changes in the teacher candidates' beliefs about what it means to

know mathematics and how mathematics is learned. But in the context of student

teaching, we uncovered a tension between their ideal vision related to themselves

as adult learners of mathematics and their practice with young children. The first

section of this paper illustrates how members of the cohort were coming to think of

297

297



themselves as learners of mathematics. The second section offers a contrast in how

two of our subjects interpreted the teacher's role in the mathematics classroom
during their student teaching experience.

Teacher candidates as learners of mathematics. When the teacher
candidates entered the first course of the mathematics sequence, memory and

algorithmic thinking played a large role in their conception of what it means to know

mathematics. By the second mathematics course, they were developing a set of

intellectual tools - ways of thinking about problems, a repertoire of strategies,

models and representations, and a disposition to engage collectively in mathematical

searches - that increased their confidence and ability to apply knowledge in
unfamiliar problem contexts. There was the beginning of a shift away from the

instructor as the sole authority for knowing and a reliance on their collective ability

to decide when a problem had reached resolution. The following instance
exemplified this attitude.

In the second week of the geometry course, the class was presented with this

problem:

There is a tree at every lattice point on a geoboard that is extended
infinitely to the right and up. You are standing at (0,0). Is it possible to begin
at (0,0) and walk on a straight path through the forest without hitting a tree?

Students' intuitive sense was that one would eventually walk into a tree. The initial

discussion centered on various ways to think about the problem. Several students

thought it might be approached by considering the slope of a line. Others argued

for a consideration of the notion of infinity while others offered suggestions about

angle measures. The charge to the students was to think hard about the various
conjectures before the next class. On the second day, much of the discussion
centered on struggling with the idea of infinity.

Lori: You couldn't walk without hitting a tree because it is impossible to go
at an infinitely small angle. It would be infinitely small, but once you draw
it, it is finite. You could never start the walk.

Instructor: Is it fair to say that what you wanted to do was something very
close to the x-axis? Now you are saying that won't work because eventually
this thing moves up into the forest?

Bonnie: Visible points are ones that are relatively prime coordinates. So if
you go to just primes, there are an infinite number of primes so eventually
you have to hit a tree.

Instructor: You're saying...if this set is infinite, there must not be any holes
in it. Can you think of any sets that are infinite that have holes in them?
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These conjectures led to a discussion of rational numbers, a return to the notion of

slope, and a consideration of lines with rational and irrational slopes. Not yet

convinced by any argument, the class put the problem aside, returning to it the next

meeting.

Lori: If you went to the point (1, 2) like we were talking about, if you draw
a line...(pause)...like that's never going to get you to a point because 2 times
any whole number is never going to give you an integer.

Instructor: (drawing the line Lori was talking about) Is it possible for that
line to hit a lattice point where the coordinates are whole numbers? It is
sometimes easier to understand an argument if you look at the negative side
of it. If that line hits a lattice point, what can you say about the slope of that
line?

The students reasoned that if the line did hit a lattice point, the slope would have

a rational representation which was a contradiction.

These students wrestled with an unfamiliar problem over several days. Some

ideas were advanced, abandoned for a while, then returned to as new insights were

revealed. The inquiry continued until students convinced themselves with a
persuasive and mathematically reasonable argument that it was indeed possible to

walk not just one path, but an infinite number of paths, without hitting a tree. We

saw this pattern throughout the geometry and probability courses--their increasing

conceptual orientation to the study of mathematics.

The teacher's role in the mathematics classroom. Many of the teacher

candidates appeared to be moving toward Level 3 in the way they talked about the

teacher's role in creating effective mathematical experiences for children. Because

of their experience in the math sequence, they talked about group work, non-routine

problem situations and multiple representations as a powerful way for students to

explore mathematics and construct mathematical knowledge. However, in the
context of student teaching, our observations revealed a tension between this ideal

vision and their practice with children. We draw on data for two of our subjects to

compare their approaches to planning and carrying out instruction.

Linda. Linda wrestled with the big conceptual ideas embedded in a
particular piece of mathematical content.

Linda: I knew it would be important to help students construct a solid
concept of fraction - what is a fraction...what they represent...a variety of
situations where understanding part of a whole and part of a set are
important.

She thought hard about what she wanted her students to understand.
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She regularly drew from three main resources--the textbook, NCTM Standards

(Commission on Standards for School Mathematics, 1989) and her own evolving

conceptual framework of mathematics and how it is learned. She was critical of her

textbook in which a single page was intended to develop a complex idea.

Linda: There was one page in the text...in which a student could easily do the
entire page, get 100% - a they had to do is count and fill in numbers - and
not get any idea about what it really means to think about fractions as part
of a whole.

She valued providing opportunities where students could talk about and

make sense of mathematical ideas for themselves. We observed her use the daily

"lunch count" as a problem situation. She noticed some students wrote 25/29, others

wrote 29/25, to represent the fraction of students who were present that day. She

raised this with the class.

Linda: Here's a couple of different things I see people writing down. Could
someone explain what this [25/29] means?...Could someone explain what this
[29/25] means?...Which one of these describes the situation we have?

When the question was posed about the fraction of people getting hot lunch,
controversy arose. Students debated whether the "whole" was the number of
students in the class or the number present that day. They reasoned that the
"whole" should be the number present because those who were absent would not be

having lunch at school.

Her attempts to organize instruction around central ideas and relationships

were sometimes frustrated by gaps in her mathematical knowledge. Her field

instructor described it this way.

An analogy to a road map helps me think about what is missing for Linda.
She knows that a big picture exists. The big ideas can be represented by
cities. But some of the roads connecting the cities seem incomplete. She
doesn't always understand the subtleties. For example, in her fraction unit,
she got into trouble when she introduced her representation of equivalent
fractions. She didn't understand the big conceptual leap it required for kids.

Denise. Denise consistently focused on getting to "the algorithm." She was

committed to beginning instruction at the concrete level. But the choices she made

were driven by "neat" activities rather than an overall conception of the
mathematical content or how the activity would help children to understand an idea.

In some cases, the manipulative she chose was an inappropriate model for the
mathematical idea. Her unit on division is illustrative. She began by having

youngsters put several hundred pieces of macaroni into 2, 3, and 4 groups. On the

second day, she moved to the symbolic level, emphasizing place value and partial

quotients, using this form as a way to "record the answer."
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For class work, students were to divide 115 pieces of macaroni into 2, 3, 4, 5, 6, and

7 groups and record their answer as above. Most children worked with the

macaroni. A few resisted, preferring to just do the problems symbolically. However,

these children very quickly ran into trouble. They could not figure out what to do

in 3 115 when 3 would not divide exactly into 100. On the third day, Denise used

a "chip trading" board to illustrate regrouping in division. Again, work at the

concrete level was coupled with the symbolic "record." On the fourth day, her final

day of student teaching, she demonstrated the long division algorithm at the board.

In the span of four days, students had been given two different models for thinking

about division as well as an algorithm. In the rush to the algorithm, there was little

attempt to make connections among the various representations.

In an interview following observation of these lessons, Denise explained her

decision-making.

All I really wanted them to see out of that was an experience they could
think back to when they get into the symbolic representation. I thought
there were a few of them that would get the idea that if the 100 didn't divide
evenly that they were going to have to do something with the extras. Now
today, trading with the chips, I hope the connection is made. I hope that
once it's followed through with the actual algorithmic step that this will all
make more sense.

For her, getting to the algorithm was key because that would clear up any
misunderstandings children had with concrete representations. Her mentor

commented on this.

She's getting so much into the algorithms. She thinks this will make it
clearer for the children...To her, those symbols convey all the thoughts that
she needs.

Summary. Linda thought about her role as a mathematics teacher in a way

that consistently approached Level 3. Denise, on the other hand, approached Level

2. What distinguished these two student teachers were the mathematical goals they

set for their students, the learning opportunities they provided, and the degree to

which conceptual understanding or algorithmic thinking focused their efforts.

Efforts to improve the teaching and learning of mathematics by reorganizing

the curriculum around concept development and problem solving requires that

teachers have a conceptual understanding of mathematics. It also means challenging

their deeply held beliefs about young children as learners of mathematics and about

the elementary mathematics curriculum. Our study reveals the complexity of this

change process. Over the next year, we will be following our intensive sample as

they enter their first year of teaching. Will Linda be able to withstand the pressures
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to conform to a more traditional approach? Will she pursue ways to increase her

own mathematical knowledge? What might push Denise beyond her algorithmic

approach to teaching and learning mathematics? This continuing study has
implications for teacher educators and mathematics educators working to reform

elementary teacher education programs.

Endnotes

(1) This work is sponsored in part by the National Center for Research on Teacher
Education, College of Education, Michigan State University. NCRTE is funded
primarily by the Office of Educational Research and Improvement, U.S. Dept. of
Education. The opinions expressed in this paper do not necessarily represent the
position, policy, or endorsement of the Office or the Department.
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LEARNING TO TEACH MATHEMATICS:
A REPORT ON THE METHODOLOGY OF AN ECLECTIC INVESTIGATION

Doug Jones, Catherine A. Brown, Robert Underhill, Patricia Agard
Virginia Tech

Hilda Borko
University of Maryland

Margaret Eisenhart
University of Colorado, Boulder

This paper discusses the methodology used in the ongoing
investigation "Learning to Teach Mathematics: The Evolution of
Novice Teachers' Instructional Decisions and Actions." This
longitudinal study is concerned with the claims, thinking, and
actions of 8 preservice middle school mathematics teachers, and with
the sociocultural environment in which they are learning to teach.
The paper reports methodology intended to provide background data
with which to develop grounded theory about the learning-to-teach
process.

The project "Learning to Teach Mathematics: The Evolution of Novice
Teachers' Instructional Decisions and Actions" (NSF # MDR 8652476) involves a

longitudinal study of beginning middle school mathematics teachers. It is our intent

to gain as complete an understanding as possible of the process of learning to teach

as experienced by beginning teachers and the forces that influence their professional

development while they are learning to teach. Our goals are (1) to provide the kind

of background data on beginning mathematics teachers that will foster the
development of richer theoretical frameworks for research in mathematics teacher

education, and (2) to make recommendations to the field concerning mathematics

teacher education programs. We are using multiple research perspectives and

methodological techniques.

In order to meet our research goals, we are investigating the teachers'
claims--their knowledge and beliefs- -about mathematics, mathematics pedagogy,

general pedagogy, curriculum, learners, and themselves as teachers. We also are

investigating the teachers' thinking before, during, and after teaching and the
relationships between their thinking and their claims. We are concerned with the

sociocultural environment our informants encounter, both in their preservice teacher

education program and in the schools in which they teach, and the effects on them

of participating in the research study.

During the first year of the study (AY 1988-89), we followed 8 preservice

teachers, who selected mathematics as a concentration, through their final year of
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teacher education. This experience included several methods-of-teaching classes,

three half-day student teaching placements, and one full-day student teaching

placement. Our informants represent diverse educational backgrounds and a range

of competencies in mathematics. We attempted to select informants, from a cohort

of 36 preservice teachers, consistent with the ethnic and gender makeup of the

group. The informants include seven white females and one black female. One

white male initially agreed to participate but later withdrew. During the second year

(AY 1989-90), we will be following 4 of the 8 informants through their first year of

classroom teaching.

Our data collection procedures are numerous and draw from both the
anthropological and psychological traditions. We are committed to qualitative
methodology (Erickson, 1986; Goetz and LeCompte, 1984) in order to try to develop

the depth of understanding we seek about individuals and about the process of

learning to teach. We rely primarily upon interviews and observations in order to

gather information about informants' claims, thoughts, and actions. These data are

supplemented by questionnaires and written documents (e.g., lesson plans,

assignments in the mathematics methods course, journals). We also are gathering

interview and observational data from significant others in the sociocultural
environment in which the informants are learning to teach. All interviews are semi-

structured and are based on protocols developed and piloted in advance. All are

audiotaped and transcribed for analyses.

CLAIMS

For this project, we are investigating the claims held by individuals about

mathematics, mathematics pedagogy, general pedagogy, curriculum, learners, and

themselves as teachers. Claims are taken to be elements on a beliefs-knowledge

continuum. Both beliefs and knowledge are concerned with what a person holds to

be true (Green, 1971) and are distinguished in part by the extent to which an
individual can promise to others the right to be sure of the knowledge or belief

claim (Scheffler, 1965). With both are associated a way of holding them, evidence

for holding them, and cognitive and affective content. For this project, we are

investigating the types of claims individuals hold, the bases for holding them, the

susceptibility of the claims to change, how consciously they are held, and their

emotive content. We are interested in how the claims interact with the teachers'

thinking and actions and how the sociocultural environment in which our informants
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are learning to teach affects their claims.

Although we are using many data sources to try to understand the
participants' claims, we designed specific interviews and questionnaires to focus

most directly on this component of the research. Recognizing that claims are always

embedded in a paradigm or world view (Kuhn, 1970) and that they are not always

accessible for articulation, we designed these instruments to not be connected overtly

to the teacher education program and to combine a mixture of direct and oblique

questions. For example, in trying to learn about the claims the preservice teachers

hold about teaching the division of common fractions, we asked them to respond to

materials from the teacher's edition of a sixth-grade textbook, asked them to
respond to a hypothetical student's homework on problems taken from that material,

and asked them to describe how they would go about teaching it. In another part of

the interviews, we asked them to describe the relationships they see between 19

common topics in middle school mathematics, one of which was the division of

common fractions. Both the interviews and the questionnaires ask the preservice

teachers to respond to what it means to know the division of common fractions and

ask them to work problems and illustrate them with diagrams or stories. We also

are interviewing and observing the preservice teachers during their field placements

in order to see whether and how their claims are evident in their planning and

teaching actions. Throughout our data collection we strive to "make the familiar

strange" (Spradley, 1979). That is, we ask our informants to explain the source of

their ideas, how and why they decided on teaching actions, and what they mean by

such terms as "problem," "understanding," or "the basic idea" in order to guard

against over-inferring on the basis of situations, words, or phrases that might be

assumed to have common and shared meanings. These instruments and observations

are used at several different points in the year, and are intended to provide us

"snapshots" of the participants' claims. Thus they provide us with some information

about changes in claims.

THINKING

Thinking is a way in which the teachers call upon their claims. Temporally,

this encompasses three categories (Clark and Peterson, 1986): pre-active, interactive,

and post-active (with respect to teaching). Teacher thinking can also be categorized

according to planning, reflecting, evaluating, and responding to uncertainties or

dilemmas (Clark,. 1988). We are investigating the nature of teachers' thinking as
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categorized temporally, the resources upon which they draw in their thinking, the

relationships between thinking and claims, and whether and how teachers' thinking

changes over time and with experience.

Since we do not have direct access to our informants' thinking, we must rely

upon self-reports and observations. We are using a number of data sources to try

to understand informants' thinking and its relation to their claims. With respect to

their teaching, we are observing each informant's teaching on five consecutive days

at three points during the year and are interviewing them before class about their

plans and how they arrived at those plans, and after class about the teaching that we

observed. The pre-observation interview elicits information concerning their

intended actions, how they planned for the class session (their "pedagogical
reasoning," Shulman, 1987), upon what resources they drew when planning, and what

they would like us to pay particular attention to during the class session. The post-

observation interview focusses on the informant's reaction to the class (what she was

pleased or concerned about), what she would do differently if she could reteach the

class, and episodes that we feel constitute "critical moments" (Shroyer, 1978) in the

class session. Critical moments include such things as explanations or examples

offered to the class or to individuals and actions that appear to be taken as a result

of an immediate situation. In order to answer questions concerning the influences

of the informants' supervisors, interactions between informants and these significant

others are observed and expectations and reflections of the informants and
significant others are elicited in interviews.

We also are learning about our informants' thinking by asking them to "think

aloud" during different tasks in the claims interviews. For example, they are asked

to think aloud when sorting mathematical topics in order to show relationships

between them; they are asked to think aloud when working mathematics problems;

they are asked to think aloud when sorting phrases about types of teachers in order

to tell us about characteristics of mathematics teachers, English teachers, elementary

school teachers, middle school teachers, and themselves as teachers.

SOCIOCULTURAL ENVIRONMENT

In gathering data about the sociocultural environments in which our
informants are learning to teach, we are concerned with two broad categories: the

environment of the university experience and the environment of the school

experience. The instruments we are using to gather data regarding the informants'
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university experiences are designed to provide a picture of how the sociocultural

environment of the university and informants' experiences within this environment

influence their claims and the process of learning to teach. The experiences of our

informants related to their particular teacher education program are hypothesized

to be major factors in their learning-to-teach process. In order to document these

experiences we developed a number of interviews to be conducted with informants

and with significant others. These interviews are designed to provide data
concerning the various components of the program from a number of perspectives

and to help us understand the informants' experiences in the program.

Data regarding the informants' school experiences (their field placements)

are designed to help us understand their claims, thinking, and actions. Interviews

were developed to gather information concerning the sociocultural environment of

the school division, the schools, and the classrooms in which our informants taught.

These interviews are conducted with informants, cooperating teachers, university

supervisors, building principals, and several administrators from the school division

central offices. They elicit information concerning the social organization of
mathematics instruction, cultures of teaching, and significant others' claims about

working with student teachers.

SUMMARY

There are several critical aspects of this investigation. First and foremost is

its attention to both the cognitive and affective aspects of preservice teachers' claims

and thinking and to the sociocultural environment in which they are learning to

teach. This has provided a difficult challenge to meet in designing and carrying out

our data collection. Yet we find the balance between these aspects of the learning-

to-teach process to be a very natural and vital one for investigation. Framing the

investigation around the domains of mathematics, mathematics pedagogy, general

pedagogy, curriculum, learners, and self-as-teacher is enabling us to learn about the

importance of mathematics in the process of learning to teach mathematics in the

middle grades. It has become apparent that a less holistic approach to learning

about the informants' experiences would yield a meager picture at best.

A second critical aspect of the investigation is its longitudinal design. A

long-term involvement is vital to the development of any robust understanding of

the learning-to-teach process. This process is not restricted to the university
classroom or to a relatively short field placement; rather, it continues well into a
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teacher's full-time classroom experience. Following the teachers over a two-
year period will allow us to see whether and how their claims, thinking, and teaching

change and what factors are important in any changes.

Finally, it is critical that we are not involved in any evaluation of the
informants, their placement schools, or their teacher education program. We are

trying to understand what aspects of the learning-to-teach process are salient for

them; we are not attempting to see "how well" they are doing. The project is
involved with building grounded theory (Strauss, 1987) with which to inform further

research and development in mathematics teacher education.
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ELEMENTARY TEACHERS AND PROBLEM SOLVING:
TEACHER REACTIONS AND STUDENT RESULTS

Jerry K. Stonewater
Miami University of Ohio

This paper describes a course in mathematical problem solving
strategies for elementary school teachers the results of this training
of their students' problem solving performance as measured by
select items from NAEP, and the teachers' reactions to the course.

The results of the Fourth National Assessment of Educational Progress call

attention to two areas of weakness in the mathematical performance of middle
school students: they perform poorly on problems requiring non-routine and

problem solving type solutions; and boys outperform girls on higher level application

of mathematical skills, on geometry-related problems, and on problems in
measurement (Dossey, Mullis, Lindquist & Chambers, 1988). Other research in

teacher knowledge of mathematics makes a strong case that efforts to improve

children's mathematics learning might first begin with enhancing teachers' knowledge

about mathematics (Ball, 1988; Oprea and Stonewater, 1988). Yet the degree to

which inservice training of teachers results in improved learning in their students is

still an open question (Szetela and Super, 1987).

Partly in response to these research findings, The Ohio Problem Solving

Consortium has received funding to form a cooperative venture between public

school teachers and university personnel to implement a multi- phase project to

improve the problem solving abilities of middle school teachers and students
(Stonewater and Kullman, 1985; Stonewater and Oprea, 1988). The purpose of this

article is to describe the problem solving course and report the results of the course

in terms of the teachers' students problem solving abilities and in terms of
teacher-reaction to the course.

METHODOLOGY

To assess the effectiveness of the course on the participating teachers'

students, 19 sixth through eighth grade Consortium teachers and six middle school

teachers not involved in the project administered select items from the NAEP before

the problem solving course began, and again six months later after the end of the

course. Eight items were chosen from the fourth mathematics assessment

and were selected to represent problems which could be solved using at least one

Funding for this research is sponsored by Title H of the Education for Economic
Security Act and administered by the Ohio Board of Regents, grant numbers 5-19
and 8- 19.
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of the strategies learned by the teachers. A total of 365 experimental students and

91 control students in grades six through eight completed all testing. The sample

included 209 males and 247 females.

Data were analyzed using a multiple analysis of covariance, with pre-test

scores as the covariate, posttest scores on each item as the eight dependent
variables, and control or experimental group as the independent variable. For

statistically significant F-values, univariate post-hoc analyses of variance were

computed for each of the eight test items separately. Similar analyses were done

in order to analyze possible gender differences. Finally, teacher response to the

problem solving course was assessed via written questionnaires and journals they

kept during the class.

PROBLEM SOLVING COURSE

Teachers were expected to learn and be able to use seven different problem

solving strategies: Guess and Check; Patterns; Simpler Problem; Elimination;

Working Backwards; and Simulation. Teachers were also expected to reorient their

own teaching to include units on each of the problem solving strategies. The
problem solving course was designed on the basis of the Instructional Model for

Problem Solving or IMPS model (Stonewater, Stonewater, & Perry, 1988), which is

grounded in cognitive developmental theory and describes three categories of
instructional approaches: structure; direct experience; and diversity. Examples from

two of these categories are described below.

Direct Experience The IMPS model also suggests that activities which

engage teachers in direct application of what they are learning will enhance learning.

First, in conjunction with the local public broadcasting television station, a series of

four video tapes, entitled Problem Solving in the Middle School, were developed as

examples of what "master teachers" do when teaching problem solving. These were

viewed by the class. One particular useful portion of the tapes shows middle school

teachers actually using various problem solving strategies in their classes. Teachers

particularly liked segments of the tapes which showed students working on the

strategies and teachers could often relate their own students' reactions and problems

to what they saw on the tape.

As another direct experience method, teachers were asked to apply each of

the strategies in their own classes and to keep a journal of their experiences. While

this activity did not engage the teachers directly in actual problem solving, it helped

them build confidence in their abilities to teach problem solving.
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Diversity Another approach used in the IMPS model is that students must

actually engage in and confront the complexities of what is to be learned in order

for them to experience disequilibrium. Presenting diverse situations for the teachers

to engage in is a method of doing this. Thus, problems which required the teachers

to generalize beyond their current levels of mathematical knowledge and thinking

ability were presented. For example, teachers rarely had difficulty with pattern

problems like predicting the next term in the sequence 1/(1*2), 1/(2*3), 1/(3*4),....

But in order to challenge the teachers and create the required disequilibrium, the

problem was extended to find the sum of the series 1/n(n+ 1).

RESULTS

Effect of Participation Results of the statistical analysis of student
performance on the NAEP items indicated an overall by-item difference between

groups (F=2.58, p<.01). Post-hoc analyses indicate these differences appear for

two items: one measuring a combination Guess and Check/Elimination strategy

(F= 12.79, p<.01) and the other a Guess and Check problem (F=5.70, p< .02). Both

of these differences were in favor of the experimental group.

Gender Analysis There were no statistically significant differences in

problem solving between boys and girls in the experimental group by item (F=1.18,

p<.31). On the total test, percent increase from pre- test to post-test for girls did

exceed that of the boys: 10.3% vs. 9.2%, respectively, but adjusted post-test means

are almost identical for the two groups: boys answered an average of 5.34 (66.7%)

out of 8 items correctly on the post-test and girls answered an average of 5.30

(66.3%) items correctly.

Teacher Reactions Teacher reactions from the post- class and post-course

questionnaires, as well as from their journals, point out two major areas in which

they felt they had changed: self-confidence; and self- perception as mathematics

teachers:

When I begin a Friday math class with something other than
problem solving and my students remind me that Fridays are
reserved for problem solving, I know I've done the right thing. When
students ask for additional copies of the problems because their
parents also enjoy doing them, I know I've done the right thing.
When I, a person respected as a language arts teacher, lose track of
math time, dismiss my math class late and only then, reluctantly, I'm
SURE I've done the right thing!

Teachers felt that their increased self-confidence was primarily due to the

fact that the strategies they learned provided a variety of new-found tools, methods
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and approaches that they could use to attack problems. Teachers also reported
shifts in the perceptions they held of themselves as mathematics teachers. A

number of teachers pointed out that prior to the course, they had not really thought

of themselves as mathematics teachers, but identified themselves more closely with

other content areas, often language arts:

What an exhausting week-end. My mind is still spinning from our
meeting. You don't know what a change this is for me. I have
always been Linda, teacher of reading and other language arts. I
have really worked and worked to learn all I can in this area. Now
you tell me I must be Linda, teacher of math too? What really blows
me away is that I am really enjoying it! I feel like the kid...who gets
the award for the most improved!

CONCLUSION

The results of the NAEP study indicate that the experimental group
statistically out-perform the control group on only two problems out of eight, and

both problems were classified as solvable by Guess and Check. Further, there were

no differences in performance between girls and boys. Finally, teachers reported
positive changes in their self-confidence in doing mathematical problem solving, and

recognized changes in their perceptions of their roles as teachers.
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THE USE OF 'MINI-INTERVIEWS' BY 'ORTHOPEDAGOGUES':
THREE CASE STUDIES

Jean J. Dionne & Michelle Fitzback-Labrecque , Universite Laval

The 'mini-interview ' is a new tool for evaluation of
mathematics at the primary level. It is characterized by a
short sequence of questions and tasks that a teacher
can use with each of the pupils in the classroom to
evaluate their level of understanding of a given concept,
and also to gather some feedback about his or her
teaching. But not all teachers are willing to use such a
tool. We thus asked three 'orthopedagogues' - these are
specialists who help teachers in their work and handle
children with learning difficulties- to perform these in-
terviews with regular third graders. Preliminary results
of this experiment indicate that the three orthopeda-
gogues found the time to integrate this component to
their regular workload; the resulting evaluation proved
useful to them as well as to the classroom teachers; it
brought about a better understanding of the children's
difficulties and thus about how to help them more effi-
ciently.

The mini-interview is a new tool developed by Nantais for evalu-
ating the understanding of mathematical concepts (Nantais, 1989, Nan-
tais et a1.,1983). As indicated by its name, the mini-interview is a short
interview that a teacher can use with each one of his or her pupils and it
can be carried out in the classroom with each child. It consists in a short
dialogue between the teacher and the child within the context of a given

clearly defined task pertaining to mathematics notions that have already
been taught. The children are questioned about the task at hand in order

to bring to light the procedures they are using. The correctness of the an-

swer to a given problem or task is relatively of minor importance here, the
emphasis being on their thinking as evidenced by their procedures.

The mini-interview has been tested (Nantais, 1987,1989) and the
experiment has brought out the conditions under which a teacher can
effectively use this tool: the training required, the classroom organization
needed, etc. The results indicate that teachers can use this type of inter-
view as a tool for formative evaluation, i.e. enabling them to gather some

feedback about their teaching and useful information about their pupils'
understanding of the mathematical concept at hand.
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But not all teachers are ready to use such a tool for it is quite de-
manding: it requires a careful preparation, some changes in the usual
classroom organization, time to analyze the pupils' answers, etc. This
raises new questions: would it be possible and desirable to have some-
one else prepare the mini-interview, carry it out with each of the students

and then analyze their answers? Who could perform this on a regular
basis? What would such an operation bring to the teachers and their stu-
dents?

THE 'ORTHOPEDAGOGUES'
In a large number of schools in the Province of Quebec, one finds

a specialist called an "orthopedagogue" whose function is to work both
with the children and their teachers.

With the children, the orthopedagogue takes care mainly, but not
exclusively, of the diagnostic and remediation aspects: they work individ-

ually or in small groups (a maximum of four children) with those detected

as having some learning difficulties, especially in French and mathemat-
ics. In some cases, "re-education" is required in order to help the pupils

in developing cognitive structures that have remained inadequate. In
other cases, their lessons will deal with a specific notion so that the child
can link it to previously acquired knowledge, he or she can then re-inte-
grate the class and learn more autonomously. Finally, in the simplest of
cases, their intervention would simply be construed as pedagogical re-
inforcement, i.e. providing additional learning activities to children who
do not have serious difficulties but whose learning is rather slow.

In order to be of assistance to the teachers, the orthopedagogues

prepare and correct different written tests assessing the pupils' knowl-
edge and abilities. They thus provide the teacher with an overview of
their class indicating what the students have retained from their instruc-
tion. Considering the results of the assessment, the orthopedagogue
might then suggest some appropriate learning activities to the teachers,
or even help them build some.

RESEARCH QUESTIONS
Considering the nature of the orthopedagogues' work, one can

perceive the usefulness that the mini-interview could have for such spe-
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cialists: it would enable them to perform more complete and more forma-

tive evaluations, thus helping to detect the children's difficulties in math-
ematics and to plan some necessary remediation. It would also enable
them to provide the teacher with a more detailed and more precise profile
of the class and hence to plan more relevant and more rewarding learn-
ing activities. But obviously, all these questions at hypothetical and need
to be verified, whence the following research questions:

- How can the mini-interview be integrated in the orthopedagogue's

work?

- What would the orthopedagogue's use of such a tool bring to the teach-

ers and their pupils?

METHOD
The best way to find answers to these questions is to experiment

with real orthopedagogues working in normal conditions within the
school context; hence our choice to proceed using case studies.

Three orthopedagogues, three women working in different
schools, volunteered for the experiment, and where trained during a
half-day session. During that period they were introduced to the mini-in-

terview both at a theoretical and practical level. Following a short discus-
sion on the general topic of evaluation, we presented them with the mini-

interview and explained the spirit in which it was conceived, its objec-
tives, how questions and material need to be prepared, and the way
children are to be interviewed in order to assess their thinking in a rea-
sonable amount of time. They were then provided with a prepared mini-
interview (a questionnaire) on the concept of numeration. They were also

given a framework in which to analyze the pupils' answers. This frame-
work was based on a description of understanding the concept of nu-
meration according to the Herscovics & Bergeron (1988) model of
understanding. Finally, we explained what our experiment was about

and what they would have to do to provide us with the data needed for

our analysis.
We gave our volunteers a few weeks to get ready, during which

time we remained available to answer their questions. Following this pe-

riod of preparation, the three orthopedagogues used the mini-interview
with each child in a Grade 3 class of their respective schools (n 25).
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levels, from kindergarten to Grade 6. Hence the orthopOdagogues had to

reorganize their work and do a few hours of overtime. Part of this time
was needed due to the experimental nature of the work, especially the
time spent on the final report and one of the two hours spent with the
teacher. However, part of the remaining time used with each class would

have been used under regular circumstances: the standard written test
would have been given and corrected, the teacher would have been met,
and work with some of the children would have been performed. Hence,
the real extra time required by the mini-interview does not exceed 8 to
10 hours.

The orthopedagogues thought that this was quite a heavy load but
they still found it acceptable for several reasons: because they did not
have to perform such interviews every week in each of the classes, and

more importantly, because they thought they would need less time with
more experience in mathematics! This proved to be a great surprise, for
all three admitted that, like a large number of their colleagues, they sel-
dom worked in mathematics, preferring to work on the children's French,
a field in which they felt more adequately prepared. In mathematics, they

usually had been happy to administer some exams, report the results to
the teacher, without doing much work with the children. In fact, the mini-
interview had given them an opportunity to work in an area they had
somewhat neglected. Thus, they did not consider the matter of time as a
problem and believed they could reduce some of the time allocated to
French and use it in mathematics, does achieving a better balance be-
tween the two disciplines.

They were full of praise for the mini-interview, and this explains
their willingness to re-organize their work. They could only see the ad-
vantages in the new tool:

- for the children who, by trying to answer questions dealing essentially

with their thinking processes, are brought to communicate their com-
prehension explicitly and thereby manage to gain a deeper under-
standing;

- for themselves, for they had found a tool enabling them to assess the

mathematical processes used by all the children in order to uncover
their difficulties, even in cases where these were concealed by ac-
ceptable performances on written exams. One orthopedagogue even
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Each orthopedagogue then analyzed the pupils' answers in order to as-
sess their understanding. This was then compared with another evalua-

tion based on traditional tests written by the same children during the
same period of time. Finally, each orthopedagogue communicated her
conclusions to the respective teacher and used them in her own work
with the pupils in the following weeks.

TYPE OF DATA COLLECTED

The data we gathered were of different kinds. It included:

- the tape recording of the interviews carried out by the orthopeda-
gogues; the orthopedagogues' analysis of the children's answers;

- daily notes written by each orthopedagogue in a journal describing
what happened and what they had done; this included remarks deal-
ing with the mini-interview, the problems that had occurred, the solu-
tions they had found for these problems, etc.;

- the orthopedagogues' answers to a questionnaire regarding the useful-
ness of the mini-interview in their work, about its advantages and dis-

advantages, about the changes they had to make in their regular
work, etc.;

- the answers that the involved teachers gave to a questionnaire seeking
their opinions about the mini-interview and the possible effects its use

by the orthopedagogues might have had on their pupils;

- the results obtained by these students on the usual class exams;

PRELIMINARY RESULTS
In order to assess if the mini-interview could be integrated in the

orthopedagogues' work, we first examined how much time they had
spent on the experiment: an average of 20 hours! By and large, the inter-

views required between 10 and 15 minutes per student, thus a total of
about 6 hours. To this must be added time for a short term preparation
(?), (2 h.), time for giving the traditional written test ( (1 h.), time for ana-

lyzing the answers to the test and those gathered in the interviews, (2 h.),

time for meeting the classroom teacher (2 h.), time to work with the stu-
dents afterwards (4 h.), and time to prepare their report on the experi-
ment (3 h.). This amounts to a great amount of time allotted to a single
class since the orthopedagogue must work with with each class at all
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stated: "It is a very convenient tool for finding those pupils who have
developed mechanical routines without any concrete representation
of the processes involved...something that traditional testing would
not reveal". Let us add here that their analysis of the children's under-

standing seems to be, at a first glance, remarkably perceptive;

- for the teacher, since the orthopedagogues thought that with this new
form of evaluation they could help them focus their teaching on the
concepts involved and not just stress performance and good answers.

Moreover, disclosing the strengths and weaknesses of a group at a
given level would allow for some preventive interventions with teach-
ers of the lower grades;

- for the parents, with whom communication becomes easier since the
orthopedagogues are now in a position to provide clearer explana-
tions about a children's mathematical knowledge and how they can
be helped, if needed.

The orthopedagogues' enthusiasm is shared by the teachers
whose classes were involved in the experiment. They contend that they

were not disturbed by the interviews even if at all times, children were
going in and out of the classroom to meet the orthopedagogue. In gen-
eral, the conclusions drawn from the mini-interviews confirm much of
their own evaluation but , for three or four students in each class, they
acknowledge that the interviews revealed problems of understanding
that could not have been detected through any of the written tasks. The

three teachers liked the material that had been used in the interviews
(chips for units , envelopes containing chips for the tens) and used it af-
terwards in the classroom. They also suggested their use to the parents
of the children who had some difficulties. The teachers also stated that
next year they would like to participate again in such an experiment and
suggested that it be carried out at the beginning of the school year, so
that right from the start, their might better direct their efforts towards the
needs of their pupils.

320

319



BY WAY OF CONCLUSION

Despite the preliminary nature of our analysis, these results reflect

the relevance of the mini-interview. The kind of renewal it brings to the
process of evaluation seems to answer some real need. For the or-
thopedagogues, who up to then had done little in mathematics education
despite the fact that it was considered part of their work, their responses
are quite revealing. And so is the response of the teachers who , for in-
stance, recognize that they have gained a better grasp of some of their
students' understanding and who would be pleased to see the experi-
ment tried again some time in the future. The fact that the mini-interviews

were carried out by someone other than the classroom teacher does not
seem to have affected the effectiveness of this new tool. And with this
effectiveness now acknowledged by the teachers, perhaps it will be pos-

sible to convince them to handle some of the interviewing themselves or
to participate more actively in their realization.
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DEVELOPING PROBABILITY AND STATISTICS
FROM PROBLEM SITUATIONS:

AN EXPERIMENTAL COURSE FOR PROSPECTIVE TEACHERS

Georgianna T. Klein
Grand Valley State University

This paper reports findings of a participant observer in an
experimental class in probability and statistics for prospective
elementary and middle school teachers. Based on a constructivist
approach, the class introduced concepts in an integrative fashion
through problem situations. The researcher found evidence of
students adopting an approach toward problem solving of attempting
to make sense of the situation.

NCTM (1989) has created a vision about the teaching of mathematics that

includes the learning of mathematics as an active, constructive process with
instruction based on problem situations. This paper reports results of a participant

observer at a large university in a class in probability and statistics for prospective

elementary teachers (K-8) that conformed to this vision. Data were fieldnotes and

audio-recordings of interviews.

PORTRAIT OF A CLASSROOM

Mathematics instruction was based on the LES Model of the Middle Grades

Mathematics Project of MSU (Shroyer, 1984). A problem was posed, and students

made conjectures, with justification, about the outcome. The activity was then

explored, and during debriefing, concepts were developed jointly by teacher and

students through dialogue. Concepts were presented in an integrated way with each

new concept appearing first as part of a problem situation. Students explored

aspects of the concept in different activities and over time developed an
understanding of the entire concept. The language used was informal, with terms,

such as expected value, used in context until they became part of the working
vocabulary of students.

MATHEMATICS AS A CONSTRUCTIVE ACTIVITY

This teaching scheme was a deliberate attempt to help students adopt an

approach of "making sense" of probability and statistics. In an interview, the teacher

explained she viewed mathematical knowledge as nodes of structurally related ideas,

such that knowledge added to one part affects many other parts, which in turn must

be adjusted. Concepts are never fully formed, but evolve as students construct new
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or additional meaning. The teacher is questioner, tasksetter, and guide for assisting

students to construct a coherent realization of a concept. Starting from problems

is intended to facilitate students' reflecting, questioning, and reevaluating previous

ideas.

This teaching style is consistent with a constructivist approach to learning as

defined by von Glasersfeld (1987). He characterizes knowledge and competence as

the product of students' conceptual organization of their individual experiences, not

a transferable commodity that can be conveyed by communication. Learning is

drawing conclusions from experience and acting accordingly, and making sense is

organizing experiences in some way or with a view to making predictions about

experiences that are to come.

This teacher's approach is in marked contrast to what occurs in typical
classrooms, where a few concrete or case specific examples of a concept are
compared in order to extract elements common to them all and thereby abstract the

concept itself. Discussion then moves to formal, simplified versions of the concept

with applications following to produce the desired "understanding". Such schemes

assume that if one understands the structures in different symbolic representations

and if one perceives the isomorphism between those representations, then one can

abstract the underlying mathematical concept (Schoenfeld, 1987). Such an approach

could obscure facets of a concept, thereby preventing a full understanding of it

(Borasi, 1984).

Teaching that focuses too directly on abstracting formal concepts does not

account for the complexity of concept understanding. Tall and Vinner (1981)

distinguish a concept definition and a concept image. They define concept image

as:

The total cognitive structure that is associated with the concept,
which includes all the mental pictures and associated properties and
processes. It is built up over the years through experiences of all
kinds, changing as the individual meets new stimuli and matures. [...]
All mental attributes associated with a concept, whether they be
conscious or unconscious, should be included in the concept image.

The concept definition must contain only those properties common to all instances

considered, but the concept image very likely contains other elements, which pertain

to specific instances that may be evoked when dealing with the concept. Students

in the process of acquiring a preliminary understanding of a concept may have an

incoherent concept image without being aware of it.

Janvier (1987), also separating concepts from conceptions, suggests that the
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main questions regarding development of conceptions concern timing. When

meaning for students appears to vanish as soon as they are presented with formulas,

it may be because the concepts themselves are so powerful. Thus, he advocates

understanding being developed at the preconcept stage prior to learning the formal

concept.

This teacher's holistic approach that continued to focus on meaning in the

problem situation, rather than relying on abstracting commonalities that could result

in students' dismissal of meaning prior to some reasonable level of understanding,

is consistent with Borasi, Janvier, Tall, Vinner, and Schoenfeld.

RESULTS

What evidence is there that students developed a view of learning
mathematics as a complicated, constructive activity? In one interview when asked

if this course had changed her thinking about mathematics, one student replied:

Yeah, I wanted to do it more straight forward, but I see, the more
open you are to different ideas, and allowing the kids to do examples
and experiments themselves allows them to understand it more
better. [...j If they don't get hands-on experiments, they are gonna try
to understand, but like me. I had problems somewhat myself. but
when I was in her class, and we did hands on. I could remember it
and do things. I could remember it. I could grasp the concepts; it
was so much easier. I didn't have to work at it. It was there!

This same student said she took this class so she could teach-- so she could
understand. When questioned further, she said:

It's how she presents things, in the class-- allows you to be able to
usually pick it up from one thing and say that this relates to this
other thing. So it's not that difficult; you just gotta relate things.

Another student made connections between classes and between

teaching and learning. She risked writing a paper for this class on a topic from

another class that she did not understand. She successfully critiqued a journal

article on regression toward the mean and discussed its relation to teaching the

topic even though the necessary sophistication level seemed inconsistent with her

class performance. Later, she proudly stated she now understood the topic. She

learned that one can learn by trying to teach, and her topic choice suggests she was

motivated by wanting to 'make sense' of it.

Written work on tests provides evidence of sensemaking activity. Figure 1

is a problem from the first test.

324

32



2 Another carnival game is called "Making Purple'. It is played on the two spinner
pictured below. The object is to spin twice and land on the colon needed to make purple
(red and blue). The choir.e of spinners is up to you.

Spurner A Spinner a

Patty chose to spin twice on spinner A. John chose to spin twice on spinner B. Mary
spun fast on spinner A then on spinner B. Who has the best chances of making purple?
Explain in detail how you reached your decision.

Figure 1.

(Identify the three problems as AA, BB, and AB for the two spinners used.)

Problem 2 was an extension of previous problems. Any prior spinner

problem involved spins on the same spinner, except for a single problem in the

context of binomial distributions that involved 6 spins on the same spinner, and

which was solved using Pascal's triangle.

Students could not rely on a formal algorithm unless they categorized each

part of this problem as involving a sequence of two independent events and also as

involving two mutually exclusive cases within each problem. The work of three of

the four students did indeed illustrate that they were guided by this method, but

each failed to carry out the process completely. Each altered the process for the

problem AB with two of the them adding, instead of multiplying, probabilities. This

alteration suggests that as the complexity of the problem increased, the students

either worked harder on it, or they were influenced by the representation.

When asked why she had added in the case AB, one student referred directly

to the representation of two separate spinners:

I was thinking while adding, I got ibi_s problem, and tbia problem.
Now all I have to do is to add these together to get the third prob-
ability because they are separate. In my mind I made them separate,
really separate. When I pulled them together, they weren't being
multiplied, because they were so separate. When it was in its own
wheel, you know, it's altogether, and I'd multiply. You do the regular
thing, but when they are so separate I couldn't pull them together.

Her reference to "do the regular thing" indicated she used an algorithm of
multiplying two probabilities for two sequential events, yet was strongly influenced

by the representation to make sense of the problem in some other way.
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In addition, her work displayed a considerable amount of other activity,

implying she was actively trying to make sense of the situation, rather than applying

a well-learned algorithm. In one corner was an area grid for geometrically

computing probabilities. Other calculations, which suggested she was trying to

compute expected value, lead the researcher to believe (as was later confirmed) she

was linking this problem to one from class that involved sequential, independent

events.

An area grid would have provided a simple, accurate Method for all three

parts of this problem. When asked why she had drawn, but not used, the grid, she

explained:

I had, but I erased everything before. If you looked underneath it,
it would all be erased because it didn't make sense to me; it wasn't
working. The answers weren't working with my logic. I was saying
there's no way that this could be right. One of them has to be more
than the others. There couldn't be a tie or anything like that. So I
erased what I had underneath there. [The probability of getting
purple from both BB and AB is 1/6.]

She explained that it didn't seem logical that the probabilities could be so

inconsistent with the proportions between spinners.
The fourth student's work implies that she tried to make sense of the

problem as a problematic situation, rather than to identify a problem type and apply

an algorithm for solution. She used none of the previous methods, but created a

probability tree for each of the problems. Her use of trees was surprising for two

reasons. While students had used trees to create lists of possible outcomes, prior

to this test, probabilities were listed on the branches only in the context of a maze

problem in which an area grid was the primary vehicle of problem solution. Had

the student considered this, she would likely have used the area grid since later

interview responses confirmed she understood well the grid's use. Second, up to

this time, she had never seen a tree with unequally likely branches. Yet to account

for P(blue) = 1/2 on spinner B, while each other probability was 1/6, she simply

added two branches for blue so the tree had six equally probable branches. Except

for a minor computation error, she solved the problem correctly. When queried

about her method, she replied that she had been introduced to the tree for creating

lists in middle school and thought it was a useful tool. During the term, trees

appeared in her written work, either as a solution tool or a check of a problem
solution, indicating that she regularly made sense of problems in her own way, using

her own devices in addition to any tools introduced in class.
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CONCLUSIONS

In summary, individual students seemed to see the value of activities in

constructing mathematical understanding and to try to "make sense" of the
mathematics they were learning, rather than to categorize problems and apply

algorithms. During the course of the term, conjecturing moved from single
conjectures with reasons to debate over their relative merits. Students made

connections to other mathematical experiences and to teaching.

There are, however, limitations to the conclusions that can be drawn from

this small study. The class was self-selecting and, thus, attracted highly motivated

students. The inter-action during each class between the teacher and each class

member provided unusually rich social interaction that may not be possible in larger

classes. It may, however, point to what is possible when such interaction takes

place.

A more serious question is that of research method. The nature of
instruction requires that research be contextual, yet it is difficult to document what

mathematics is being learned. Interviewing and stimulated recall for written and

class work needed to be supplemented with task-based interviews. Such interviews

could provide useful information, yet they are an intervention in that they provide

the very instruction that is being researched. If we are to study this kind of
mathematical instruction, we need valid research methods, or at the very least,

better ways of accounting for the intervention of the data collection on what is

learned.

327

326



REFERENCES

Borasi, Rafaella. (1984). Some reflections on and criticisms of the principle of
learning concepts by abstraction. For the Learning of Mathematics, 4(3), 14-
18.

Janvier, C. (1987). Conceptions and Representations: The Circle as an example.
In C. Janvier (Ed.), Problems of representations in teaching and learning
mathematics. (pp. 147-158). Hillsdale, NJ: LEA.

NCTM. (1989). Curriculum and evaluation standards for school mathematics.
Reston, VA: Author.

Schoenfeld, A.H. (1986). On having and using geometric knowledge. In J. Hiebert
(Ed.), Conceptual and procedural knowledge: The case for mathematics.
(pp. 225-264). Hillsdale, NJ: LEA.

Shroyer, J. (1984). The LES instructional model: Launch-explore-summarize.
Proceedings of Honors Teacher Workshop 1984. E. Lansing, MI:
Department of Mathematics, Michigan State University.

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics
with particular reference to limits and continuity. Educational Studies in
Mathematics, (12), 151-169.

von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.),
Problems of representations in teaching and learning mathematics. (pp. 3-
17). Hillsdale, NJ: LEA.

328



CHANGES IN PRE- AND IN-SERVICE TEACHERS'
VIEWS OF PRIORITIES IN ELEMENTARY

MATHEMATICS AS A FUNCTION OF TRAINING

Rochelle G. Kaplan
William Paterson College

This paper reports on two efforts to expand teachers' conceptions of
the scope and goals of elementary mathematics education. The first
study assessed the impact of a video-based workshop series on in-
service teachers' ability to analyze children's mathematics
performance and on their views about content and assessment
techniques. The second study focused on changes in the quality and
content of questions asked by students In a pre-service elementary
mathematics methods class as a function of instruction that included
problem-solving, hands-on approaches, and videotape analysis. The
results of both studies indicated some shift toward more precise
labeling of observations and educational concepts as well as some
tenacity of beliefs. Differences between the needs and conceptual
frameworks of the two groups are discussed in terms of their
implications for professional development programs.

Contemporary views of elementary mathematics education have placed
increasing emphasis on problem solving, active learning, and an expanded conception

of the scope of mathematics curricula (National Council of Teachers of
Mathematics, 1989). While few mathematics educators would argue with this
emphasis, the reality is that most practicing teachers and current students preparing

for careers in elementary education were personally educated at a time when

elementary mathematics was conceived of as little more than the acquisition of

basic skills and mastery of computational competence. Therefore, in calling for new

ways of teaching children, we are asking teachers to embrace an orientation and

utilize a knowledge base that may be alien to their own ways of thinking about

mathematics (Clark & Peterson, 1986). In order to carry out the spirit and not just

the form of the contemporary view of elementary mathematics, then, both in-service

and pre-service teachers need to be reeducated in their own conceptions of
elementary mathematics. The purpose of this paper is to report on two attempts

to achieve this goal.

STUDY 1

Project Description. During the fall semester, a series of five workshops was run

as part of an in-service teacher enhancement project conducted in an urban school

district. The project, sponsored by the National Science Foundation (Ginsburg &
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Kaplan, 1988), focused on developing elementary teachers' sensitivity to the variety

of ways in which children understand and interpret mathematics content presented

to them. During the workshops, conducted after a pre-intervention evaluation
session, participants were asked to view and analyze videotapes of preschool through

third grade children engaged in some mathematics tasks. The workshops were
attended by about 75 volunteer teachers, staff developers, and supervisors.
Following the final workshop, attending participants were asked to complete a post-

experience evaluation form.

Evaluation Procedures. The participants were evaluated on two tasks intended to

assess their conceptions of what was important in elementary mathematics. The first

measure consisted of their open-ended responses to an observation of a short
videotape segment of a first grade child engaged in some simple counting and
arithmetic tasks. On this measure respondents were asked to report the "highlights"

of what they observed on the tape. On a second measure, participants were asked

to complete an open-ended self-report questionnaire including questions about what

they thought were the most important things to be learned in elementary
mathematics and how they thought these could be best assessed. Before and after

responses were coded according to categories of behavior and concepts that were

spontaneously reported.

Results. In the pretest situation there were a total of 28 respondents, on the video

task and 32 respondents to the questionnaire (a return rate of about one in three

of those in attendance). On the posttest there were 15 respondents to the video

task and 16 to the questionnaire (also a return rate of about one in three of those
in attendance). Distinct responses within each individual's protocol were scored

separately and summaries of the occurrence of response categories were calculated

as percentages of the total number of responses made at pre-and post-assessment

periods.

The most salient trends noted in the data were the following: In general
there was a marked increase in the specificity of observations made on the
videotape. Most notably, there was a decrease in the number of vague references

to general ability or some affective state and an increase in the number of specific

solution strategies spontaneously recognized. On the questionnaire item referring

to the best methods for assessing learning, there was an increase in statements about

particular individual interviewing techniques and a slight reduction on reliance on

written testing procedures and unspecified forms of observation. There were few
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changes, however, on responses to the question regarding the most important things

to be learned in elementary mathematics. Respondents tended to hold fast to (and

even increase the mention of) vague notions about conceptual processes and

unspecified problem-solving skills.

STUDY 2

Project Description. The second study took place within the context of a small pre-

service methods course in elementary mathematics. Participants were seven post-

baccalaureate students who attended eight class sessions, each for four hours. The

focus of the course was to model problem-solving, hands-on approaches to
contemporary topics in elementary mathematics and to increase personal

understanding of mathematical concepts. Analysis of videotapes of children actively

engaged in mathematics tasks was also included in the course.

Evaluation Procedures. The questions that the students wrote on a weekly basis

served as the material through which changes in their conceptions about what is

important or problematic in mathematics instruction could be inferred. Responses

were categorized according to the concepts, procedures, and behaviors that were

spontaneously mentioned.

Results. The number of questions asked in each of the categories was totaled for

each week and a percentage of occurrence for each category was tabulated within

each category. A comparison was made between the first four weeks and the second

four weeks of the course. Analysis of the data indicated a continued predominance

of interest and concern about teaching techniques and personal knowledge of

mathematics over the eight-week course of study. However, a relative increase in

the specificity of questions asked about teaching methods (including materials,

procedures, and concepts) was noted. There was, for example, a decrease in
questions such as, "Are there any creative ways to teach the skills other than by

rote?" and an increase in questions such as "What type of manipulative would you

prefer when teaching decimals? Dienes blocks or squared paper models--or would

you choose something entirely different? Why?"

Unlike the in-service teachers, this group did not spontaneously raise issues

about problem solving, interviewing techniques, or children's solution strategies.

Only a very slight increase in concern about techniques for dealing with individual

differences in learning was noted.
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DISCUSSION AND CONCLUSIONS

Although the results of these studies are essentially qualitative and
constrained by small numbers, they do point to some interesting trends. First they

suggest that while some beliefs and concerns of in-service and pre-service teachers

can be modified by the kind of training provided in these studies, others may remain

unchanged. They also indicate that the concerns, and consequently the content that

was learned, varied as a function of differences in the conceptual frameworks that

participating groups brought to their experience.

For example, after training in the videotape workshops on what to look for

and how to use interviewing techniques, in-service participants seem to have
enriched their understanding of ways to analyze children's conceptual and procedural

knowledge in mathematics. However, this new knowledge did not diminish their

tendency to refer only to vague generalities about the importance of problem solving

strategies. These findings are consistent with the Peterson, Fennema, Carpenter,

and Loef (1989) position that teachers' beliefs, thoughts, judgments, and knowledge

affect the extent to which they implement a training procedure as intended by the

procedure developers. The findings also support the position articulated by Adams

(1989) that thinking skills introduced and developed in some specific context, will

be remembered, understood and accessible only in relation to that context.

Second, in contrast to the in-service teachers, the pre-service teachers did not

make the same kinds of knowledge gains. Although exposed to the same videotapes

as the in-service staff, they did not come away with an increased appreciation of

children's strategies and potential skill for conducting individual assessments.

Rather, their attention remained drawn to the practical concerns of a beginning
teacher, i.e., what the teacher should do and how could it best be done.

The differences observed in what the in-service and pre-service groups

learned and how their concerns changed or remained fixed, suggest that it is not

enough simply to provide "models" of instruction as some suggest (Hyde, 1989) nor

is it enough even to provide information with an opportunity to practice (Joyce &

Showers, 1988). Rather it is up to us as teacher educators to acknowledge the

varied perspectives of in- and pre-service teachers and then adapt our instruction

to their vantage points. In taking their perspectives into account, we increase the

probability that the message of contemporary mathematics educators will be heard
and put into practice.
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CONSTRUCTIVISM: A MODEL FOR RELEARNING
MATHEMATICS

Laura Coffin Koch
General College

University of Minnesota

A large number of students enter college each year not
knowing basic mathematical concepts such as fractions,
decimals and percents. Although many students take
mathematics for twelve years in elementary school,
junior high school and high school they lack the
fundamental processes necessary to be successful in
college level mathematics courses. In this paper a
teaching model is outlined that will benefit those
students in the learning of mathematics and mathematical
processes. This model is based on the tenets of
constructivism as put forth by von Glasersfeld (1983).

Since January of this year, the public and the educational community have been

deluged with report after report (Romberg, 1989; National Research Council, 1989;

etc.) of the dismal state of mathematics education in this country. Although this

may appear to be a new phenomena, it has long been seen in college developmental

mathematics classrooms. Twenty-five percent of all incoming college freshmen are

enrolled in developmental mathematics courses (arithmetic, elementary algebra and

intermediate algebra), with eighty-five percent of colleges and universities across

the country offering such courses (Hall, 1985). In addition, Lawson and Renner

(1979) found that more than fifty percent of all college freshmen tested with
Piagetian-type measures were still at the concrete operation level of thought. Not

only are students not learning the mathematical content that is being presented in the

schools, but more importantly, after twelve years of mathematics, they have not

learned how to think, or process mathematically. College developmental
mathematics programs try to teach all the mathematics that the students have not

learned in the pre-college curriculum in the shortest possible time with little thought

given to teaching the students to think mathematically. The traditional methods of

instruction are the lecture approach and the programmed study approach
(McDonald,1988). However, high failure rates indicate that these methods are not

appropriate for most developmental college students (Garfield, 1988). This should

not be surprising since many of those failing have built up twelve years of
misconceptions and procedural bugs (Brown and Burton, 1978). Procedural bugs
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are errors in a student's algorithms that are consistent and systematic. These

approaches may foster only more misconceptions and procedural bugs in that the

students are not given "the opportunity to experiment directly with a reality that

contradicts their beliefs" (Nesher, 1988; p 71).

A STUDY OF DEVELOPMENTAL COLLEGE MATHEMATICS STUDENTS

In fall, 1988, twenty-five students who enrolled in a developmental arithmetic

course at a large urban university were interviewed and asked to provide self-

reports of their experiences that related to the learning of mathematics. The
questions were open-ended and ranged from specific information to broad
questions relating to feelings and attitudes toward themselves as learners of
mathematics and mathematics in general. The results are summarized for questions

which asked the students to reflect, in detail, their previous experiences in
mathematics, relating to both classroom learning and out of school mathematical

experiences. The students reported that mathematical knowledge and sophistication

gained during the early years was limited and fragmented. Furthermore, all
subjects received less than 80 percent on an arithmetic pretest, a test which
consisted of computations and word problems involving whole numbers,
fractions, decimals and percents. At the same time, more than 85 percent of the

students reported that they had taken geometry and two years of algebra in high

school. Throughout their mathematical career, it was evident that the teacher was

the center of the universe, giving out the knowledge and providing the motivation

for learning. When the student felt any satisfaction or sense of achievement, the

teacher was there to reward or to withhold rewards, thereby providing the student

with evidence that the learning of mathematics was out of the student's control.

Seventy-two percent of the students reported that by the sixth grade, they knew that

they were poor mathematics students. More than fifty percent indicated that their

downfall was learning the multiplication tables. Ninety-two percent related vivid

memories of being embarrassed or humiliated by a teacher in a mathematics class

during their pre-college schooling.

Throughout junior high and high school, as the question about knowing

mathematics again surfaced, as is natural during the search for identity during the

teen years, many students learned that the mathematical world was not what it

seemed. The lack of understanding that was evident in earlier years, reared its ugly
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head as the students were thrown to the "algebra" wolves. The eight percent of the

students who reported being successful in the elementary school became lost by

ninth grade algebra, implying that prior to high school eighty percent of these

students had already developed poor self-images of themselves as mathematics

learners, yet they most of them continued to take mathematics in high school. Not

one student reported any positive interventions on the part of teachers, guidance

counselors or parents. Through these years their mathematical knowledge remained

stagnate. Mathematical representations of the world were only partially developed.

Each student developed his or her own incompatible view of the world and his or

her own mathematics (misconceptions and procedural bugs). And, to make matters

worse, mathematical experiences were limited. Since mathematics only involved

calculations, calculators took away any rationale for learning mathematics. The

student knew that the mathematical world (i.e. the mathematics classroom) was not

the world in which he or she wanted to live, but knew that he or she would have to

cope. By this time, the world in which the student lived had become a world of

"objective facts" or "things-in-themselves" given by others, to the student. At no

time was the student involved in the development of his or her own mathematical

knowledge. Over eighty percent of the students recalled sitting in high school
mathematics classes (algebra, geometry and basic mathematics) feeling lost and

unable to grasp the material being presented. When asked why they enrolled in yet

another mathematics class in their first quarter of college, ninety-two percent said

that it was required, and that they had no choice. Of this ninety-two percent,
twenty percent said that they would have taken mathematics anyway, especially

since it would be a chance to "start over". Although these results are preliminary,

they do suggest that for a certain group of students pre-college mathematical

experiences provide little mathematical understanding and negative attitudes with

respect to mathematics. If the students select to take mathematics in college, as

required by choice of major, or specific collegiate requirements, then it is necessary

to consider instruction that attempts to overcome negative experiences, detect and

address misconceptions and procedural bugs, and provide an environment in which

students can begin to understand the mathematical world. One such instructional

model is one based on the tenets of constructivism.
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APPLYING CONSTRUCTIVISM TO THE COLLEGE CLASSROOM

Von Glasersfeld (1983) contends that "knowledge is not a transferable
commodity" and the teacher cannot be the dispenser of "truth" but a facilitator in

conceptual understanding, "it is the student who must do the conceptualizing and

the operating." Furthermore, von Glasersfeld suggests that "if students are to taste

something of the mathematician's satisfaction in doing mathematics, they cannot be

expected to find it in whatever rewards they might be given for their performance

but only through becoming aware of the neatness of fit they have achieved in
their own conceptual construction" pp 67-68. This view of learning is referred to

as constructivism. Constructivism calls for both the student and the teacher to be

learners. The teacher must first construct his or her knowledge of the student's

present cognitive structures. This can be done through observations and interviews

with the student. Once this is accomplished, the teacher's role is to modify those

structures to become like the "adult" cognitive structures. This is achieved by
means of "indirect guidance". As learning is not only for the student, but also the

teacher, the teacher must develop a model of the student's conceptualization, and

assess possible avenues for that student. This can only be done if there is "real"

communication between the student and the teacher. The teacher must establish the

framework for this communication through a common language. Fulwiler (1982)

states that language is the symbolic system in which we receive, transmit, and
process information as well as represent, study, and understand the world.
Furthermore, Fulwiler reports:

We think things by talking to ourselves, carrying on "inner"
conversations in which we consider, debate, and rationalize. The key
to knowing and understanding lies in our ability to manipulate
internally information and ideas received piecemeal from external
sources and to give them coherent verbal shape. We learn by
processing. and we process by talking -- to ourselves and to others
(P.17).

Piaget believed that language is the basis for scientific reasoning and as an

individual moves from the concrete operational stage to the formal operational stage

(abstract thought), sensory and perceptual experiences give way to symbolic
representations. This process can be enhanced through the use of language, both

written and spoken, as put forth by Bruner (1966) and Lesh (1979). Britton (1970)

extends the idea of speech when he suggests that if we are to make sense of reality,
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we must be able to symbolize reality, and we do this through speech. In order to

come to an understanding of a concept or event, we talk to others about the concept

or event. The purpose of talking is not just to communicate but to internalize that
concept or event.

According to the constructivist point of view, a teacher must continually

communicate with the student and through this communication comes the teaching,

and hence the learning. According to Cobb and Steffe (1983) a successful teaching

communication will occur "whenever the teacher's actions are guided by explicit

models of the children's mathematical realities. From this perspective, the activity

of teaching involves a dialectic model between modeling and practice" p.86. The

students' constructions are generated by the impact of these interactions on the
student's own cognitive structures and not the interaction itself.

TEACHING MODEL

A model of instruction for the relearning of mathematics based on a

constructivist view point needs to provide the teacher and the student ample time for

interaction and "indirect guidance". This can be achieved only when the teacher is

taken out of the role of the source giver of knowledge and makes the student the

center of the learning process. The use of pair-problem solving (Lochhead and

Whimbey, 1982) and/or small cooperative groups are possible alternatives that could

allow the teacher to interact with individual students. In addition, well developed

questions and activities would provide the pairs or small groups the experiences that

are necessary for them to internalize the thought processes that are required to learn

mathematics. The teacher is continually interacting with either individual students or
several students, determining each student's state of mathematical understanding.

As the teacher interacts with each student, the teacher is able to modify that
student's present concepts and operations. While the teacher is working with one
student or several students, the rest of the class, whether in pairs or in small
groups, is testing or practicing their own hypotheses or ideas or processes in a
non-competitive and non-judgmental environment. The use of pairs allows the
students to practice questioning and monitoring. The teacher can also use writing as

another tool to help assess mathematical understanding. When students are asked
to write out a protocol (procedures used to solve a particular problem), the teacher

is able to assess concepts and operations. It is also a mode in which a student can

monitor his or her own processes. Writing allows a student to review and revise.
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Once a protocol is written, a student can orally follow the protocol and attempt to

follow the logic of the protocol. If the logic appears faulty, the student can correct

it, or question the teacher. In turn, the teacher can, in writing, question the student.

By keeping a detailed journal of problem protocols, a student can "track" past errors

and areas of difficulty. Furthermore, writing can serve as a catharsis for students

with math anxieties by expressing their fears, dislikes, frustrations and anxieties,

as well as their successes and achievements. Through the oral and written

interactions, the student is able to reflect on and attempt to resolve any cognitive

conflict, which is necessary if the student is to going to come to "know"
mathematics.

College developmental mathematics programs cannot change the students' past

experiences, but can, and should, use those experiences to foster and encourage

new mathematical growth.

For students who have spent twelve years sitting in mathematics classes,

and are still lacking basic mathematics concepts and processes, relearning
mathematics through a constructivist approach may provide the impetus that is

needed. The constructivist approach would: 1. provide students the opportunity to

demonstrate many of their misconceptions and procedural bugs and then be given

the opportunity to be carefully confronted with those misconceptions and
algorithms, thus creating the need for cognitive conflict" (Bruner, 1966) that is

necessary for cognitive development; 2. encourage students to become the center of

their own learning by offering opportunities that allow the student to build on his or

her own views of the world; and 3. gain the confidence and experience the

satisfaction that can only be achieved when students develop internal curiosity and

motivation.
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EXAMINING CHANGE IN TEACHERS' THINKING
THROUGH COLLABORATIVE RESEARCH.

Barry A. Onslow
University of Western Ontario

Eight teachers from grades 7 through 10 were involved
in phase one of a three year study examining the effects
of collaborative research on change. Indications are
that parallels exist between proven methodologies
facilitating student learning and the collaborative
method of professional development.

This paper describes the initial phase of a project designed

to examine change through a co-operative networking system

comprising a symbiotic relationship among classroom teachers, a

mathematics consultant and two teacher educators. One focus of

inquiry was to examine changes in teacher thinking resulting from

participation in the project.

Although there has been a change in the content of middle

school mathematics programs over the years, there has been little

change in teaching style. Teacher explanations dominate most

classrooms, with teachers being more concerned with classroom

control than mathematical meaning, and mathematics being viewed as

a collection of facts to be absorbed rather than as a collection of

ideas to be examined and discussed. (Research Advisory Committee,

1988, p.341; Romberg & Carpenter, 1986, p.851; Lapointe, Mead &

Phillips, 1989).

It has been suggested that it is necessary for teachers to

recognize the benefits of new ideas if modifications to teaching

style are to be realized. (Howson, Keitel and Kirkpatrick, 1981,

p.8). The more traditional forms of information dissemination,

such as workshops, presentations and printed materials may not

provide enough opportunity for teachers to discuss innovations and

internalize new ideas for themselves. Moreover, transmission of

information in this traditional style may not be the most effective

means of assisting teachers in their development of new conceptual

frameworks. We know from research with children that what is

learned is seldom an exact replication of what has been read or
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heard (Brandt, 1988/89, p.15). Why should this be different for

teachers?

This project was based on the belief that teachers do need to

reflect on both theory and practice, and consequently it provided

an opportunity for them to critically scrutinize their own teaching

within a supportive environment. Such reflection by teachers on

their own practice is an essential component of professional

development since such reflection allows them to identify research

findings which they consider beneficial (Campbell, 1988, p.102), and

a rationale for change becomes explicit.

Diagnostic teaching, incorporating conflict discussion (Bell

et al., 1985), was the strategy used in the classroom. Although

students are more likely to construct correct conceptual frameworks

when taught in this fashion rather than in the more traditional

expository style, communicating this philosophy through print is

inadequate (Onslow,1986).

The reactions of teachers to a change in emphasis in their

teaching style is examined by addressing the following questions:

1. What changes in teachers' thinking, concerning the learning of

mathematics, took place during project participation?

2. Which project elements appear beneficial in effecting change?

3. What support appears necessary to facilitate change.?

METHOD

Eight volunteer teachers (two from each of grades 7 through

10) participated in the initial phase of the project, which involved

deliberations about the philosophy underlying conflict discussion

in the mathematics classroom; the teaching, by pilot teachers, of

select lessons, all of which were observed and some video taped; the

design of materials to accommodate specific teaching situations; and

follow-up meetings to offer support and to discuss strengths and

deficiencies of the teaching strategy.

Prior to the commencement of the project, each of the eight

teachers completed a questionnaire designed to clarify their

philosophy of mathematics education, and describe their allocation

of time to various teaching and assessment processes. Throughout

the year teachers were encouraged to record reflections on teaching
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style and developmental process in journals, providing a

chronological overview of teachers' attitudes towards the process.

At the conclusion of year one, teachers were individually

interviewed to reassess their philosophy on the teaching of

mathematics and to discuss changes which they or the research team

had observed.

Students in participating classes wrote a general diagnostic

test in the initial stage of the project. In addition to diagnosing

students' difficulties the process was deemed necessary so that the

seriousness of researchers' concerns regarding students' conceptual

obstacles could be recognised and personalized by the participating

teachers.

The teaching style was designed to promote conflict, allowing

children to wrestle with difficult concepts and provide

justifications for their conclusions (for a detailed description

see Bell et al. 1985; Onslow 1988).

ANALYSIS OF THE DATA

The original three questions are examined using data from

questionnaires, journals, observations and interviews.

1. What changes in teachers' thinking, concerning the learning of

mathematics, took place during project participation?

Before the project commenced, teachers were asked what

percentage of time, over the course of a year/semester, they would

devote to each of the following activities (see Table 1).

Table 1. Percentage of Time Spent on Teaching Activities

Teaching Activities
Time(%)

Grades 7
teachers

& 8 Grades 9 & 10
teachers

a) small group work 50 10 5 35 5 20 0 0
b)

c)

class discussion
give suitable examples

15 5 10 10 5 20 5 5

d)

followed by practice
diagnostic assessment

25 60 60 10 45 20 75 75

(prior to teaching) 5 0 0 5 5 1 0 0

e) summative assessment 5 20 15 15 25 15 15 15
f) discovery work 0 5 10 25 10 15 5 5

g) other 0 0 0 0 5 9 0 0
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Individual results indicated that we did not have a homogeneous

group and teachers had very different views as to how students

should spend time in the mathematics classroom. The picture is

brighter than, but not too different from, that found in other

recent surveys in which teacher explanations followed by

practice in textbooks tends to be the norm (Research Advisory

Committee, 1988, p.341; Lapointe, Mead & Phillips, 1989, p.21).

Interviews at the end of the first year/semester provided

information on how teachers perceived changes in their teaching:

I didn't see this kind of thing (conflict discussion) relating
to math. I use it in history. Now I look for the

opportunities in math to have kids justify why they have a
specific answer.

Discussions were lengthy but good because I could see what
the children were doing. It was beneficial. We got into
arguments and explanations and in math we never really do
that. In math it's like, here's the question, here's how to
do it, now go ahead and do it.

I would not have believed students would have so many
difficulties with certain concepts if I had not participated
in the project. It opened my eyes that we sometimes assume
too much. That was a let down for me. Something I perhaps
didn't want to know.

It should be noted that whereas changes in teacher thinking

became evident during the course of the project, changes in teaching

style were less distinct. Observations indicated that although

discussion and analysis was taking place in the classrooms, teachers

had difficulty changing their role from transmitters of information

to chairpersons of conflict discussions, and consequently remained

the dominant persona in several classrooms, with most class

discussions being between teacher and student rather than between

student and student.

There was also evidence of teachers formulating, an explicit

awareness of implicit actions already employed in their teaching:

I think I was doing some of this before, but I was not totally
aware of why.

Indirectly, I think I have been using a similar method but
hadn't realized it, and hadn't taken the kids as far as I now
know is possible.
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Becoming aware of why implicit actions produce worthwhile

learning activities allows teachers to incorporate such actions more

frequently and confidently into their programs.

The main disadvantages of this teaching style from the teachers'

perspective, especially at the secondary level, were the over-

crowded curriculum and the shortage of time:

I think my class would benefit from this approach. They would
understand the material better, but they would suffer because
they wouldn't finish the program.

Such comments substantiate the fact that teachers are wrestling

with a dilemma, and need assistance in removing unnecessary

curriculum, if change is to become a reality in the secondary

classroom.

2. Which project elements appear beneficial in effecting change?

Four major elements appeared to be important in effecting change

during the initial phase of the study.

a) Teachers said that having their opinions valued and respected

by others in the group made them feel more professional.

Constructive criticism was evident at all meetings, and teachers

found this support beneficial:

It is important to have your opinions valued it makes you
feel that you are a professional.

I appreciated the open and supportive atmosphere. I think
this is critical to this kind of project.

b) An environment must be created in which teachers feel willing

and able to take risks if we are to see growth and meaningful

change:

My comfort level increased as the project progressed. We
didn't know what we were doing in the beginning. I can admit
that now.

We've been able to try something, come together, and say this
is what I did and this didn't work. Somebody else was able
to say well I did this a little differently and it was great.

Not all teachers felt free to take risks. One participant

presumed there was a "hidden agenda" (see Campbell, 1988, p.107).

As a new teacher, this person felt uncomfortable with the project:
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I mean in some ways all of us were guinea pigs with the method
and I was the guinea pig within the group.

Although the project leaders became somewhat aware of these

feelings part way through the project, reassurance to the contrary

did not alleviate the anxiety. As expected, this teacher did not

wish to continue for a second year.

c) Teachers need to believe in what they are doing and that the

change will benefit their students' education. Teachers must arrive

at these beliefs independently; we can no more tell them what is

fact than they can tell their students what is fact, and expect

success. The general diagnostic test allowed teachers to recognise

and personalize their students conceptual difficulties for

themselves. Class discussions provided further occasions for

teachers to recognise that while their students did not understand

some basic concepts studied over previous years, they did understand

other concepts only cursorily covered:

There were kids that were missing things that...gee, I just
took for granted that they had. Some things were coming out
that they didn't understand, some very basic things that I
assumed they already had.

d) Reflection is possible in isolation, but more difficult.

Teachers found it valuable to reflect and discuss ideas amongst

themselves and to have a mix of elementary and secondary teachers

involved in the project. Although the elementary teachers felt

somewhat anxious about the content, they were more comfortable than

the secondary teachers with the pedagogical style. Interaction

raised the comfort level in both areas:

It wasn't one shot in the dark, and it wasn't someone just
presenting a bunch of ideas to you. It was a sharing of ideas
and people talking about their experiences in relation to
their ideas.

I got a lot from everybody else, especially the elementary
teachers. I got a whole different perspective on how
elementary students think.

3. What support appears necessary to facilitate change?
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In addition to developing those elements described in the

previous section, the importance of involving principals and/or

department heads became apparent:

We need to get the principals involved. If the principal is
doubtful about the program then it's useless for me to be in
a school where I'm not getting internal support.

Although principals and department heads were invited to join

the meetings, the importance of their involvement was not stressed

and only one administrator attended a meeting.

During the year a parallel between the strategy for teaching

students and the developmental process for teachers became evident.

The climate of trust and mutual respect advocated for classroom

discussions was just as crucial for teachers' meetings. Time to

develop conceptual frameworks was necessary in both instances.

Several teachers also made the comparison:

It's just like the kids. If you give me something to read,
I may not read it. If you tell me, I'm likely to forget it.
But if you let me do it, I'll have a chance of understanding,
especially if I have support.

CONCLUSIONS

The image of the teacher as a reflective professional (Clark and

Peterson, 1986) attempting to make explicit sense of implicit

theories and beliefs concerning learners and curriculum is supported

by this study. Teachers are often isolated, however, seldom sharing

ideas about children's mathematical understanding or pedagogical

techniques with their peers.

If being aware of what students do understand rather than what

is assumed to be understood is a pre-requisite to preparing

meaningful classroom experiences, then teachers must be given the

opportunity to analyze and discuss the difficulties inherent in

learning mathematics (Carpenter, Fennema, Peterson and Carey, 1988.)

Teachers also need to practice and reflect on processes beneficial

to meaningful understanding. Without such provisions, transmission

of knowledge from researcher to teacher is probably no more

effective than transmission of knowledge from teacher to child.

It appears essential to develop a system of professional

development in which teachers can enhance their pedagogy through
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interchange, reflection and refinement of the craft. This will not

occur until research and practice are perceived as having supporting

roles and there are mechanisms in place to encourage such

professional growth.
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THE MATHEMATICS TEACHER AS RESEARCHER IN THE DIAGNOSIS
OF CONCEPTUAL UNDERSTANDING

Jean Schmittau
State University of New York at Binghamton

This paper describes the extension to a teacher education program
of a research study designed to assess conceptual understanding of
multiplication. The study, which utilized clinical interviewing and
supporting instruments, was originally conducted as a research study
with university students as subjects and later extended to secondary
students using prospective and practicing mathematics teachers in
the role of researchers. The teachers received one hour of
instruction in clinical interviewing and the use of the instruments.
The results obtained by the teacher researchers, who were
knowledgeable in the domain of mathematics but could hardly be
considered trained interviewers, were comparable with those
obtained in the original research study. The design of the
instruments elicited sufficiently robust protocols to permit the
teachers who used them to diagnose multiplicative understandings
in junior and senior high school students.

The original research study sought to determine whether multiplication was

held in cognitive structure prototypically or according to characteristic attributes

(Schmittau, 1987, 1988). It also questioned whether spontaneous and formal

concepts of multiplication had been integrated in the cognitive structure of subjects

(Vygotsky, 1962). Instruments to assess prototypicality required subjects to rate

instances of multiplication for degree of membership in the category, using a scale

of "1" to "7". "1" signified that the instance definitely belonged in the category, while

"7" indicated that the instance was a very poor exemplar of the category or did not

belong in the category at all.

Subjects were then interviewed about their ratings. They were first asked the

question: "What is multiplication? What does it mean to you to multiply?" After

responding, they were asked with respect to each instance of multiplication which

they had rated: "In what sense do you consider this (i.e., the specific instance under

consideration) to be multiplication?" A flexible clinical interview format was

followed in probing the responses, in order to assess the conceptual understandings

of subjects and to obtain information beyond that of the rating instrument. The
subjects' own meanings were elicited, and subjects were consistently directed back

to those meanings. Near the end of the interview subjects were given the

opportunity to revise their original ratings.
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The prospective and practicing teachers were provided with one hour of

instruction in the interviewing process which emphasized the difference between

clinical interviewing and Socratic teaching, and stressed such aspects of the
interviewing process as putting subjects at ease, informing them that their own

meanings were of interest rather than the correctness of their responses, and
probing beneath surface responses to elicit deeper meanings. In utilizing the
interviewing process and the supporting instruments for diagnostic purposes, the

teachers became aware of the need to overcome certain psychological effects of

formal instruction, including the tendency to respond out of a psychological set and

the predisposition to rote responses to which the students had become accustomed

to expect acceptance.

In addition, the teachers found evidence among secondary students of the

erosion of autonomy which characterized thirty percent of the original subjects,

manifested in their refusal to change their ratings from "1" even when it became

obvious to them that the instance so rated had no meaning for them. Bowing to

mathematical authority, they held that they had never trusted their own meanings.

The table below presents the mean ratings for all instances for both the

original study and its extension. Ten university students comprised the sample for

the original research. Fifteen secondary students participated in the extension,

which assigned each of fifteen practicing or prospective secondary mathematics

teachers to a different secondary school student.

Mean Ratings

Instance

Research

Original Revised

Extension

Original Revised

4 x 3 1 1 1 1

2/3 x 4/5 1.5 2.3 2.1 2.3
ab 1.2 1.9 1.4 1.7
(2x + y)(x + 3y) 1.2 2.7 2.3 2.8
(-5) x 2 1.2 2.2 1.7 1.9
( -3) (-2) 1.2 2.6 1.3 2.2
.,a7r 2.2 3.4 2.7 2.8
A = bh 1.4 2.3 2.2 2.3

Mean 1.4 2.3 1.8 2.1
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As in previous studies (Rosch,1983, 1973; Armstrong, Gleitman, & Gleitman,

1983), graded responses were accepted as evidence of prototypicality. In both the

research study and the extension the data revealed that multiplication was organized

around a single instance, "4 x 3", which functioned as a model for multiplication

across polynomial and numeric domains, and to which meaning across these domains

was consistently referred. The conceptual structure of the model instance was

determined and expressed in propositional form as the repeated addition of
generally small positive integers. Corroborating data from subjects' verbal
responses to the question concerning the meaning of multiplication confirmed the

structure of the model instance, as all subjects' meanings for multiplication could

be summarized as follows. Multiplication was viewed as a short form of addition

which enabled subjects to determine the total number of items in n groups of m

objects each, where m and n were positive integers. Alternatives to multiplication

included adding m + m + m + + m (n times) or counting the total number

of objects across the n groups. This concept of multiplication was reported by all

the secondary students as well.

Data from the original research study revealed that the tendency toward

conceptual integration cut across all of the following lines of diversity: gender,

major field, previous mathematics background, and proximity to the last formal

mathematics instruction. Similarly, in the investigation with secondary students, the

teacher researchers were surprised to discover that even some high achieving

students possessed procedural competence but little understanding of the
mathematics concepts involved.

Fraction multiplication, for example, was not well understood by either the

college subjects or the high school students. Neither the pie diagrams popular in

elementary school textbooks nor the number line were helpful to subjects in
mediating meaning. Further, the high school students, like their college counterparts,

generally found no meaning in the product of two negative numbers. They could not

envision a situation in which two numbers which possessed both magnitude and

direction could meaningfully form a product. In the case of irrationals, it was not

only the product but the numbers themselves which were not well understood.

Inadequate conceptualizations of area were found in about half the subjects in both

groups. And the pervasive employment in high school mathematics of the so-called

"FOIL" method for binomial multiplication was found to be obscure rather than

promote an understanding of polynomial multiplication.
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As a consequence of replicating the research study, the prospective and
practicing teachers began to realize the early level of mathematical preparation at

which failure to understand the requisite concepts had originated. The result was

a realization of why remediation could not be accomplished by merely "correcting

the procedure", but required an understanding of the conceptual structure of the

mathematics in question, as well as a determination of the student's understandings,

and an adequate approach to the reconceptualization required.

In general, the ratings of the high school students do not corroborate their

verbal data to the extent found in the original research study, and they reflect a

greater reluctance to revise ratings following the interview. These discrepancies

seem to center around the failure on the part of the teachers to probe as
consistently as would trained interviewers, resulting in ratings somewhat lower (i.e.,

reflecting greater meaning) than the verbal data would suggest. Secondary students

who did revise their ratings actually lowered them in a few instances; none of the

college subjects lowered ratings for any of the instances. The teachers were sensitive

to these discrepancies, however. In addition, it is important to note that the original

study required subjects to make concept maps, which provided important
corroborative data, particularly in instances where interpretation was problematic.

The original study was "streamlined", however, to accommodate the exigencies of

secondary school teaching. The teachers all had at least an undergraduate degree

in mathematics, but were not trained researchers; each had simply selected a high

school student for participation with no particular design for the selection process.

(Interestingly, the teachers tended to choose high achieving students.) Each

teacher's task was to assess the meaning for this single student of a single concept,

viz., multiplication, after exposure by the student to eight to twelve years of school

mathematics instruction which had addressed the concept in a variety of numeric,

algebraic and geometric contexts. Results were then pooled and discussed, together

with implications for instruction.

Certain aspects of the original study of interest to researchers, such as the

persistence of featural organization after years of instruction along formal
definitional lines, and the implications of the findings for the development of early

number concepts, were not explored with the teachers.

The replication served to highlight for the teachers the difference between

procedural and conceptual knowledge, however, and in the interview process they

acquired a valuable diagnostic tool. In addition, some new information surfaced in
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the replication in the way of responses on the part of the high school studentswhich

added to the research data in an interesting and productive way. As noted above,

in both the original study and the extension the exemplar appeared to function in

cognitive structure as a spontaneous concept to which the formal mathematical or

algorithmic structures were often linked with difficulty or not at all. Where such

linkages had not occurred, the algorithms for the products appeared to have been

learned by rote. Subjects reported that these algorithms had no meaning and they

often could not remember them or apply them accurately. One secondary student,

however, suggested that perhaps his definition for multiplication was inadequate or

that multiple definitions for multiplication were required.

In summary, while the prospective and practicing teachers were unable to

make the fine discriminations characteristic of trained researchers, the project
demonstrated that a research study designed to provide robust protocols can be

successfully utilized by teachers untrained in research to elicit valuable information

about students' mathematical understandings.
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